974 resultados para RNA sequence analysis
Resumo:
Genome predictions based on selected genes would be a very welcome approach for taxonomic studies, including DNA-DNA similarity, G+C content and representative phylogeny of bacteria. At present, DNA-DNA hybridizations are still considered the gold standard in species descriptions. However, this method is time-consuming and troublesome, and datasets can vary significantly between experiments as well as between laboratories. For the same reasons, full matrix hybridizations are rarely performed, weakening the significance of the results obtained. The authors established a universal sequencing approach for the three genes recN, rpoA and thdF for the Pasteurellaceae, and determined if the sequences could be used for predicting DNA-DNA relatedness within the family. The sequence-based similarity values calculated using a previously published formula proved most useful for species and genus separation, indicating that this method provides better resolution and no experimental variation compared to hybridization. By this method, cross-comparisons within the family over species and genus borders easily become possible. The three genes also serve as an indicator of the genome G+C content of a species. A mean divergence of around 1 % was observed from the classical method, which in itself has poor reproducibility. Finally, the three genes can be used alone or in combination with already-established 16S rRNA, rpoB and infB gene-sequencing strategies in a multisequence-based phylogeny for the family Pasteurellaceae. It is proposed to use the three sequences as a taxonomic tool, replacing DNA-DNA hybridization.
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Resumo:
Sequence analysis and optimal matching are useful heuristic tools for the descriptive analysis of heterogeneous individual pathways such as educational careers, job sequences or patterns of family formation. However, to date it remains unclear how to handle the inevitable problems caused by missing values with regard to such analysis. Multiple Imputation (MI) offers a possible solution for this problem but it has not been tested in the context of sequence analysis. Against this background, we contribute to the literature by assessing the potential of MI in the context of sequence analyses using an empirical example. Methodologically, we draw upon the work of Brendan Halpin and extend it to additional types of missing value patterns. Our empirical case is a sequence analysis of panel data with substantial attrition that examines the typical patterns and the persistence of sex segregation in school-to-work transitions in Switzerland. The preliminary results indicate that MI is a valuable methodology for handling missing values due to panel mortality in the context of sequence analysis. MI is especially useful in facilitating a sound interpretation of the resulting sequence types.
Resumo:
The gene encoding 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO; EC 1.14.12.4) was cloned by using an oligonucleotide probe corresponding to the N terminus of the enzyme to screen a DNA library of Pseudomonas sp. MA-1. The gene encodes for a protein of 379 amino acid residues corresponding to a molecular mass of 41.7 kDa, the same as that previously estimated for MHPCO. MHPCO was expressed in Escherichia coli and found to have the same properties as the native enzyme from Pseudomonas sp. MA-1. This study shows that MHPCO is a homotetrameric protein with one flavin adenine dinucleotide bound per subunit. Sequence comparison of the enzyme with other hydroxylases reveals regions that are conserved among aromatic flavoprotein hydroxylases.
Resumo:
The intensely studied MHC has become the paradigm for understanding the architectural evolution of vertebrate multigene families. The 4-Mb human MHC (also known as the HLA complex) encodes genes critically involved in the immune response, graft rejection, and disease susceptibility. Here we report the continuous 1,796,938-bp genomic sequence of the HLA class I region, linking genes between MICB and HLA-F. A total of 127 genes or potentially coding sequences were recognized within the analyzed sequence, establishing a high gene density of one per every 14.1 kb. The identification of 758 microsatellite provides tools for high-resolution mapping of HLA class I-associated disease genes. Most importantly, we establish that the repeated duplication and subsequent diversification of a minimal building block, MIC-HCGIX-3.8–1-P5-HCGIV-HLA class I-HCGII, engendered the present-day MHC. That the currently nonessential HLA-F and MICE genes have acted as progenitors to today’s immune-competent HLA-ABC and MICA/B genes provides experimental evidence for evolution by “birth and death,” which has general relevance to our understanding of the evolutionary forces driving vertebrate multigene families.
Resumo:
The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.
Resumo:
Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.
Resumo:
Plectin, a 500-kDa intermediate filament binding protein, has been proposed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton. To set the basis for future studies on gene regulation, tissue-specific expression, and pathological conditions involving this protein, we have cloned the human plectin gene, determined its coding sequence, and established its genomic organization. The coding sequence contains 32 exons that extend over 32 kb of the human genome. Most of the introns reside within a region encoding the globular N-terminal domain of the molecule, whereas the entire central rod domain and the entire C-terminal globular domain were found to be encoded by single exons of remarkable length, >3 kb and >6 kb, respectively. Overall, the organization of the human plectin gene was strikingly similar to that of human bullous pemphigoid antigen 1 (BPAG1), confirming that both proteins belong to the same gene family. Comparison of the deduced protein sequences for human and rat plectin revealed that they were 93% identical. By using fluorescence in situ hybridization, we have mapped the plectin gene to the long arm of chromosome 8 within the telomeric region. This gene locus (8q24) has previously been implicated in the human blistering skin disease epidermolysis bullosa simplex Ogna. Detailed knowledge of the structure of the plectin gene and its chromosome localization will aid in the elucidation of whether this or any other pathological conditions are linked to alterations in the plectin gene.
Resumo:
Competing hypotheses seek to explain the evolution of oxygenic and anoxygenic processes of photosynthesis. Since chlorophyll is less reduced and precedes bacteriochlorophyll on the modern biosynthetic pathway, it has been proposed that chlorophyll preceded bacteriochlorophyll in its evolution. However, recent analyses of nucleotide sequences that encode chlorophyll and bacteriochlorophyll biosynthetic enzymes appear to provide support for an alternative hypothesis. This is that the evolution of bacteriochlorophyll occurred earlier than the evolution of chlorophyll. Here we demonstrate that the presence of invariant sites in sequence datasets leads to inconsistency in tree building (including maximum-likelihood methods). Homologous sequences with different biological functions often share invariant sites at the same nucleotide positions. However, different constraints can also result in additional invariant sites unique to the genes, which have specific and different biological functions. Consequently, the distribution of these sites can be uneven between the different types of homologous genes. The presence of invariant sites, shared by related biosynthetic genes as well as those unique to only some of these genes, has misled the recent evolutionary analysis of oxygenic and anoxygenic photosynthetic pigments. We evaluate an alternative scheme for the evolution of chlorophyll and bacteriochlorophyll.
Resumo:
Expansins are unusual proteins discovered by virtue of their ability to mediate cell wall extension in plants. We identified cDNA clones for two cucumber expansins on the basis of peptide sequences of proteins purified from cucumber hypocotyls. The expansin cDNAs encode related proteins with signal peptides predicted to direct protein secretion to the cell wall. Northern blot analysis showed moderate transcript abundance in the growing region of the hypocotyl and no detectable transcripts in the nongrowing region. Rice and Arabidopsis expansin cDNAs were identified from collections of anonymous cDNAs (expressed sequence tags). Sequence comparisons indicate at least four distinct expansin cDNAs in rice and at least six in Arabidopsis. Expansins are highly conserved in size and sequence (60-87% amino acid sequence identity and 75-95% similarity between any pairwise comparison), and phylogenetic trees indicate that this multigene family formed before the evolutionary divergence of monocotyledons and dicotyledons. Sequence and motif analyses show no similarities to known functional domains that might account for expansin action on wall extension. A series of highly conserved tryptophans may function in expansin binding to cellulose or other glycans. The high conservation of this multigene family indicates that the mechanism by which expansins promote wall extensin tolerates little variation in protein structure.
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, has now been entirely sequenced and comprises approximately 315,000 bp, only 1.4% of which codes for protein. Analysis of this sequence reveals significantly overrepresented DNA motifs of unknown, as well as known, functions in the non-protein-coding portion of the sequence. The following types of motifs in that portion are analyzed: (i) concatamers of mono-, di-, and trinucleotides; (ii) tightly clustered hexanucleotides (spaced < or = 5 bases apart); (iii) direct and reverse repeats longer than 20 bp; and (iv) a number of motifs known from biochemical studies to play a role in the regulation of the BX-C. The hexanucleotide AGATAC is remarkably overrepresented and is surmised to play a role in chromosome pairing. The positions of sites of highly overrepresented motifs are plotted for those that occur at more than five sites in the sequence, when < 0.5 case is expected. Expected values are based on a third-order Markov chain, which is the optimal order for representing the BXCALL sequence.
Resumo:
Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.
Resumo:
The nuclectide sequence for pituitary prolactin cDNA from the marsupial bandicoot (Isoodon macrourus) was determined by reverse transcription-polymerase chain reaction and 5'/3' rapid amplification of cDNA ends. The deduced amino acid sequence showed high sequence identity with brushtail possum prolactin (95%) and all of the expected structural features of a quadruped prolactin. A prolactin gene tree was constructed and rates of evolution calculated for bandicoot, possum, opossum and several mammalian and non-mammalian prolactins. Bootstrap analysis provided strong support for marsupials as a sister group with eutherian mammals and weak support for opossum and bandicoot as an independent grouping from the brushtail possum. The rates of molecular evolution for marsupial prolactins were comparable to the slow rate seen in the majority of quadruped prolactins that have been sequenced. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Objective: The description and evaluation of the performance of a new real-time seizure detection algorithm in the newborn infant. Methods: The algorithm includes parallel fragmentation of EEG signal into waves; wave-feature extraction and averaging; elementary, preliminary and final detection. The algorithm detects EEG waves with heightened regularity, using wave intervals, amplitudes and shapes. The performance of the algorithm was assessed with the use of event-based and liberal and conservative time-based approaches and compared with the performance of Gotman's and Liu's algorithms. Results: The algorithm was assessed on multi-channel EEG records of 55 neonates including 17 with seizures. The algorithm showed sensitivities ranging 83-95% with positive predictive values (PPV) 48-77%. There were 2.0 false positive detections per hour. In comparison, Gotman's algorithm (with 30 s gap-closing procedure) displayed sensitivities of 45-88% and PPV 29-56%; with 7.4 false positives per hour and Liu's algorithm displayed sensitivities of 96-99%, and PPV 10-25%; with 15.7 false positives per hour. Conclusions: The wave-sequence analysis based algorithm displayed higher sensitivity, higher PPV and a substantially lower level of false positives than two previously published algorithms. Significance: The proposed algorithm provides a basis for major improvements in neonatal seizure detection and monitoring. Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.