987 resultados para RING FORMATION
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) (M-PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring-banded spherulites in the M-PAEK/PEEK blends is strongly dependent on the blend composition. In the M.-PAEK-rich blends, upon cooling, an unusual ring-banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M-PAEK/PEEK blend, ring-banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M-PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring-banded spherulite formation in the blends. In addition, the effects of M-PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed.
Resumo:
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.
Resumo:
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.
Resumo:
The ring-banded spherulites in liquid crystalline poly(aryl ether ketone) (LC-PAEK) and poly(aryl ether ether ketone) (PEEK) blends with a higher content (>50%) of LC-PAEK are investigated by polarizing light microscopy (PLM) and atomic force microscopy (AFM) techniques. The results indicate that the light core and rings of the ring-banded spherulites under PLM are mainly composed of an LC-PAEK phase, while the dark rings consist of coexisting phases of PEEK and a small amount of LC-PAEK. The formation of the ring-banded spherulites is attributable to structural discontinuity caused by a rhythmic radial growth.
Resumo:
Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.
Resumo:
The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.
Resumo:
Phenolphthalein based polyarylate macrocyclic oligomers were selectively synthesized by an interfacial polycondensation reaction of o-phthaloyl dichloride with phenolphthalein. The high selectivity benefits from the role of phenolphthalein as a color indicator, an efficient phase transfer catalyst, acid a preferred conformation of the starting materials as indicated by analyzing a single-crystal X-ray structure of an analogous macrocycle. The melt ROP of phenolphthalein polyarylate cyclic dimer was studied using nucleophilic initiators, The molecular weight of the resulting polymers builds up very rapidly at the very early stage of polymerization but decreases with time. During the ROP of cyclic dimer, analogous macrocycles with higher degree of polymerization (n greater than or equal to 3) and linear oligomers were produced by backbiting reaction especially at later stage of polymerization. Conversion of cyclic dimer is very fast at the earlier stage of polymerization and then increases slowly with time as analyzed by gel permeation chromatography. However, the total amount of cyclic oligomers in the ROP system increases with time at the later stage of polymerization because of the formation of larger macrocycles. The resulting polymers are amorphous. Glass transition temperatures (T(g)s) of these polymers are influenced by the polymerization time, type of initiator, and initiator concentration.
Resumo:
The surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Novel morphology of ring-banded spherulites in the surface of poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was discovered and studied by SEM and TEM. The ring-banded spherulites separate into those exhibiting a very dark contrast, of relatively regular bundles of lamellae and others appearing with a much brighter intensity, of a coarse and irregular aggregates of lamellae. The origin of the novel morphology is not due to different crystalline structures as in the case of isotactic polypropylene because only one crystal structure exists in PCL/SAN blends. The formation may reflect whether spherulites in PCL/SAN blends are nucleated at the bottom surface or at the top (free) surface.
Resumo:
NdCl3 reacts with excess CpNa (Cp=Cyclopentadienyl) in THF, followed by sequent treatment with (S)-(+)-N-(1-phenylethyl)salicylideneamine led to the formation of title compound, [GRAPHICS] The X-ray structure determination shows that it is a dimer with internal C-C bond formation and hydrogen transfer between one of Cp ring and the C=N bond of Schiff base ligand. (C) 1997 Elsevier Science S.A.
Resumo:
Ion/molecule reactions of C-60 with vinyl acetate under chemical ionization conditions have been studied here. Compared with C2H3O+ from acetone, C2H3O+ from vinyl acetate undergoes the reactions more easily, a new heterocycle between C-60 and the studied ion is formed The generation of two sigma-bonds and little angle tensile force of pentatomic ring make it more stable.
Resumo:
We study here the reactions between C-60 and planar C5H5+ cations that lead to the formation of [C60C5H5](+) adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5](+): sigma-adduct, pi-complex, [1,4]- and [1,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the sigma-addition cation. Another interesting and stable structure is the pi-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Angstrom with the C-5v symmetry. The C5H5+ cyclopentadienium cation seems to be an ''inverted umbrella'' sitting on a five-membered ring of the C-60 cage.
Resumo:
Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.