993 resultados para RESPIRATORY CHANGES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paralysis with pancuronium bromide is used in newborn infants to facilitate ventilatory support during respiratory failure. Changes in lung mechanics have been attributed to paralysis. The aim of this study was to examine whether or not paralysis per se has an influence on the passive respiratory mechanics, resistance (Rrs) and compliance (Crs) of the respiratory system in newborn infants. In 30 infants with acute respiratory failure, Rrs was measured during paralysis with pancuronium bromide and after stopping pancuronium bromide (group A). Rrs was also measured in an additional 10 ventilated infants in a reversed fashion (group B): Rrs was measured first in nonparalysed infants and then they were paralysed, mainly for diagnostic procedures, and the Rrs measurement repeated. As Rrs is highly dependent on lung volume, several parameters, that depend directly on lung volume were recorded: inspiratory oxygen fraction (FI,O2), arterial oxygen tension/alveolar oxygen tension (a/A) ratio and volume above functional residual capacity (FRC). In group A, the Rrs was not different during (0.236+/-0.09 cmH2O x s x mL(-1)) and after (0.237+/-0.07 cmH2O x s x mL(-1)) paralysis. Also, in group B, Rrs did not change (0.207+/-0.046 versus 0.221+/-0.046 cm x s x mL(-1) without versus with pancuronium bromide). FI,O2, a/A ratio and volume above FRC remained constant during paralysis. These data demonstrate that paralysis does not influence the resistance of the total respiratory system in ventilated term and preterm infants when measured at comparable lung volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Open lung biopsy (OLB) is helpful in the management of patients with acute respiratory distress syndrome (ARDS) of unknown etiology. We determine the impact of surgical lung biopsies performed at the bedside on the management of patients with ARDS. METHODS: We reviewed all consecutive cases of patients with ARDS who underwent a surgical OLB at the bedside in a medical intensive care unit between 1993 and 2005. RESULTS: Biopsies were performed in 19 patients mechanically ventilated for ARDS of unknown etiology despite extensive diagnostic process and empirical therapeutic trials. Among them, 17 (89%) were immunocompromised and 10 patients experienced hematological malignancies. Surgical biopsies were obtained after a median (25%-75%) mechanical ventilation of 5 (2-11) days; mean (+/-SD) Pao(2)/Fio(2) ratio was 119.3 (+/-34.2) mm Hg. Histologic diagnoses were obtained in all cases and were specific in 13 patients (68%), including 9 (47%) not previously suspected. Immediate complications (26%) were local (pneumothorax, minimal bleeding) without general or respiratory consequences. The biopsy resulted in major changes in management in 17 patients (89%). It contributed to a decision to limit care in 12 of 17 patients who died. CONCLUSION: Our data confirm that surgical OLB may have an important impact on the management of patients with ARDS of unknown etiology after extensive diagnostic process. The procedure can be performed at the bedside, is safe, and has a high diagnostic yield leading to major changes in management, including withdrawal of vital support, in the majority of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forced oscillation technique (FOT) is a method for non-invasively assessing respiratory mechanics that is applicable both in paralysed and non-paralysed patients. As the FOT requires a minimal modification of the conventional ventilation setting and does not interfere with the ventilation protocol, the technique is potentially useful to monitor patient mechanics during invasive and noninvasive ventilation. FOT allows the assessment of the respiratory system linearity by measuring resistance and reactance at different lung volumes or end-expiratory pressures. Moreover, FOT allows the physician to track the changes in patient mechanics along the ventilation cycle. Applying FOT at different frequencies may allow the physician to interpret patient mechanics in terms of models with pathophysiological interest. The current methodological and technical experience make possible the implementation of portable and compact computerised FOT systems specifically addressed to its application in the mechanical ventilation setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptation of 24-h energy expenditure (24-h EE) to seasonal variations in food availability was studied, by using a respiration chamber, in 18 rural Gambian men on three occasions: period 1--at the end of the rainy season, which is characterized by low food availability; period 2--during the nutritionally favorable dry season; and period 3--at the onset of the following rainy season. From periods 1 to 2 body weight increased by 2.8 +/- 0.4 kg, and a rise in 24-h EE was observed (from 8556 +/- 212 kJ/d to 9166 +/- 224 kJ/d), which was correlated to weight change (r = 0.73, P less than 0.001). During period 3, 24-h EE averaged 8740 +/- 194 kJ/d. Diet-induced thermogenesis increased significantly from periods 1 to 2 (5.9 +/- 0.5% to 8.2 +/- 0.8%) and subsequently decreased to 3.6 +/- 0.6% during period 3. In rural Gambian men, metabolic adaptations in response to seasonal changes in food availability are reflected by a decrease in body weight, mainly manifested by a loss of fat-free mass accompanied by a decreased 24-h EE and a lowered diet-induced thermogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to explore the thermogenic effect of thyroid hormone administration and the resulting changes in nitrogen homeostasis. Normal male volunteers (n = 7) received thyroxin during 6 weeks. The first 3-week period served to suppress endogenous thyroid secretion (180 micrograms T4/day). This dose was doubled for the next 3 weeks. Sleeping energy expenditure (respiratory chamber) and BMR (hood) were measured by indirect calorimetry, under standardized conditions. Sleeping heart rate was continuously recorded and urine was collected during this 12-hour period to assess nitrogen excretion. The changes in energy expenditure, heart rate and nitrogen balance were then related to the excess thyroxin administered. After 3 weeks of treatment, serum TSH level fell to 0.15 mU/L, indicating an almost complete inhibition of the pituitary-thyroid axis. During this phase of treatment there was an increase in sleeping EE and sleeping heart rate, which increased further by doubling the T4 dose (delta EE: +8.5 +/- 2.3%, delta heart rate +16.1 +/- 2.2%). The T4 dose, which is currently used as a substitutive dose, lead to a borderline hyperthyroid state, with an increase in EE and heart rate. Exogenous T4 administration provoked a significant increase in urinary nitrogen excretion averaging 40%. It is concluded that T4 provokes an important stimulation of EE, which is mostly mediated by an excess protein oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benefit of induced hyperventilation for intracranial pressure (ICP) control after severe traumatic brain injury (TBI) is controversial. In this study, we investigated the impact of early and sustained hyperventilation on compliances of the cerebral arteries and of the cerebrospinal (CSF) compartment during mild hyperventilation in severe TBI patients. We included 27 severe TBI patients (mean 39.5 ± 3.4 years, 6 women) in whom an increase in ventilation (20% increase in respiratory minute volume) was performed during 50 min as part of a standard clinical CO(2) reactivity test. Using a new mathematical model, cerebral arterial compliance (Ca) and CSF compartment compliance (Ci) were calculated based on the analysis of ICP, arterial blood pressure, and cerebral blood flow velocity waveforms. Hyperventilation initially induced a reduction in ICP (17.5 ± 6.6 vs. 13.9 ± 6.2 mmHg; p < 0.001), which correlated with an increase in Ci (r(2) = 0.213; p = 0.015). Concomitantly, the reduction in cerebral blood flow velocities (CBFV, 74.6 ± 27.0 vs. 62.9 ± 22.9 cm/sec; p < 0.001) marginally correlated with the reduction in Ca (r(2) = 0.209; p = 0.017). During sustained hyperventilation, ICP increased (13.9 ± 6.2 vs. 15.3 ± 6.4 mmHg; p < 0.001), which correlated with a reduction in Ci (r(2) = 0.297; p = 0.003), but no significant changes in Ca were found during that period. The early reduction in Ca persisted irrespective of the duration of hyperventilation, which may contribute to the lack of clinical benefit of hyperventilation after TBI. Further studies are needed to determine whether monitoring of arterial and CSF compartment compliances may detect and prevent an adverse ischemic event during hyperventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Induction radiochemotherapy, followed by resection, for T4 non-small cell lung cancer, has shown promising long-term survival but may be associated with increased postoperative morbidity and death, depending on patient selection. Here, we determined the effect of induction radiochemotherapy on pulmonary function and whether postinduction pulmonary function changes predict hospital morbidity and death and long-term survival. METHODS: A consecutive prospective cohort of 72 patients with T4 N0-2 M0 non-small cell lung cancer managed by radiochemotherapy, followed by resection, is reported. All patients underwent thoracoabdominal computed tomography or fusion positron emission tomography-computed tomography, brain imaging, mediastinoscopy, echocardiography, ventilation-perfusion scintigraphy, and pulmonary function testing before and after induction therapy. Resection was performed if the postoperative forced expiratory volume in 1 second and diffusion capacity of the lung for carbon monoxide exceeded 30% predicted and if the postoperative maximum oxygen consumption exceeded 10 mL/kg/min. RESULTS: The postoperative 90-day mortality rate was 8% (lobectomy, 2%; pneumonectomy, 21%; p=0.01). All deaths after pneumonectomy occurred after right-sided procedures. The 3-year and 5-year survival was 50% (95% confidence interval, 36% to 62%) and 45% (95% confidence interval, 31% to 57%) and was significantly associated with completeness of resection (p=0.004) and resection type (pneumonectomy vs lobectomy, p=0.01). There was no correlation between postinduction pulmonary function changes and postoperative morbidity or death or long-term survival in patients managed by lobectomy or pneumonectomy. CONCLUSIONS: In properly selected patients with T4 N0-2 M0 non-small cell lung cancer, resection after induction radiochemotherapy can be performed with a reasonable postoperative mortality rate and long-term survival, provided the resection is complete and a right-sided pneumonectomy is avoided. Postinduction pulmonary function changes did not correlate with postoperative morbidity or death or with long-term outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GABAergic system modulates respiratory activity and undergoes substantial changes during early life. Because this maturation process is sensitive to stress, we tested the hypothesis that gestational stress (GS) alters development of GABAergic modulation of respiratory control in rat pups. The respiratory responses to the selective GABAA receptor agonist muscimol were compared between pups born to dams subjected to GS (bright light and predator odor; 20 min/day from G9 to G19) or maintained under standard (control) conditions. Respiratory activity was measured on 1 and 4 days old pups of both sexes using in vivo (whole body plethysmography) and in vitro (isolated brainstem-spinal cord preparation) approaches. In intact pups, muscimol injection (0.75 mg/kg; i.p.) depressed minute ventilation; this response was less in GS pups, and at P4, muscimol augmented minute ventilation in GS females. Bath application of muscimol (0.01-0.5 μM) onto brainstem preparations decreased inspiratory (C4) burst frequency and amplitude in a dose-dependent manner; the responsiveness decreased with age. However, GS had limited effects on these results. We conclude that the results obtained in vivo are consistent with our hypothesis and show that GS delays maturation of GABAergic modulation of respiratory activity. The differences in the results observed between experimental approaches (in vivo versus in vitro) indicate that the effect of prenatal stress on maturation of GABAergic modulation of respiratory control mainly affects the peripheral/metabolic components of the respiratory control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.