908 resultados para RESONANCE RAMAN-SPECTROSCOPY
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we present a Raman study of PbZr1-xTi xO3 ceramics with composition values close to the morphotropic phase boundary region. The analysis of the Raman spectra leads to the determination of the monoclinic phase extension at different temperatures in a very good agreement with those determined by diffraction techniques. Therefore the obtained results show that Raman spectroscopy is a powerful and suitable technique to study structural phase transitions in PbZr 1-xTixO3. © 2002 Taylor & Francis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal annealings of amorphous gallium antimonide films were accompanied using Raman spectroscopy, both for stoichiometric and nonstoichiometric compositions. The films were prepared by flash evaporation on silicon substrates. Structural changes were induced by the heat treatments: an increasing degree of crystallization as a function of the annealing temperature is observed. Sb clusters are found to crystallize before GaSb does, and the dependence of the corresponding Raman peak intensity with the annealing temperature (occurring in two regimes) is explained. A mechanism for the crystallization of the amorphous GaSb is proposed, based on the prior migration of the Sb excess outside the GaSb region to be crystallized. © 1995 American Institute of Physics.
Resumo:
This work reports the analytical application of surface-enhanced Raman spectroscopy (SERS) in the trace analysis of organophosphorous pesticides (trichlorfon and glyphosate) and model organophosphorous compounds (dimethyl methylphosphonate and o-ethyl methylphosphonothioate) bearing different functional groups. SERS measurements were carried out using Ag nanocubes with an edge square dimension of ca. 100 nm as substrates. Density functional theory (DFT) with the B3LYP functional was used for the optimization of ground state geometries and simulation of Raman spectra of the organophosphorous compounds and their silver complexes. Adsorption geometries and marker bands were identified for each of the investigated compound. Results indicate the usefulness of SERS methodology for the sensitive analyses of organophosphorous compounds through the use of vibrational spectroscopy.
Resumo:
Objective: Raman spectroscopy has been employed to discriminate between malignant (basal cell carcinoma [BCC] and melanoma [MEL]) and normal (N) skin tissues in vitro, aimed at developing a method for cancer diagnosis. Background data: Raman spectroscopy is an analytical tool that could be used to diagnose skin cancer rapidly and noninvasively. Methods: Skin biopsy fragments of similar to 2 mm(2) from excisional surgeries were scanned through a Raman spectrometer (830 nm excitation wavelength, 50 to 200 mW of power, and 20 sec exposure time) coupled to a fiber optic Raman probe. Principal component analysis (PCA) and Euclidean distance were employed to develop a discrimination model to classify samples according to histopathology. In this model, we used a set of 145 spectra from N (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues. Results: We demonstrated that principal components (PCs) 1 to 4 accounted for 95.4% of all spectral variation. These PCs have been spectrally correlated to the biochemicals present in tissues, such as proteins, lipids, and melanin. The scores of PC2 and PC3 revealed statistically significant differences among N, BCC, and MEL (ANOVA, p < 0.05) and were used in the discrimination model. A total of 28 out of 30 spectra were correctly diagnosed as N, 93 out of 96 as BCC, and 13 out of 19 as MEL, with an overall accuracy of 92.4%. Conclusions: This discrimination model based on PCA and Euclidean distance could differentiate N from malignant (BCC and MEL) with high sensitivity and specificity.
Resumo:
An electronic and vibrational spectroscopic analysis of p-coumaric acid (HCou) and its deprotonated species was performed by UV-vis and Raman, respectively, and the results were supported by density functional theory (OFT) calculations. Electronic UV-vis spectral data of HCou solutions show that the deprotonation of the carboxyl group (Cou(-)) leads to a blue shift of the lowest energy electronic transition in comparison to the neutral species, whereas the subsequent deprotonation of the phenolic moiety (Cou(2-)) carries out to a more delocalized chromophore. The DFT geometric parameters calculations suggest that the variation in the electronic delocalization for the three organic species is due to different contribution of a quinoid structure that is significantly distorted in the case of Cou(2-). The Raman data of HCou and its sodium salts show that the main spectral features that allow to differentiate the three organic species are those involving the styrene nu(C=C)(sty) vibration at 1600cm(-1) region. Even though the Raman spectra of the sodium salts of Cou(-) and Cou(2-) anions show subtle differences, the appearing of a band at ca. 1598cm(-1) in the Na(2)Cou spectrum, assigned to a mode involving the carboxylate asymmetric stretching, nu(as)(COO), and the styrene stretching, nu(C=C)(sty), is quite characteristic, as confirmed by the theoretical Raman spectrum. Considering that p-coumaric acid is an archetypical phenolic compound with several biological activities that essentially depend upon the medium pH, Raman spectroscopy results reported in this work can provide a proper way to characterize such important phytochemical compound in different protonation states. In order to complement the characterization of the sodium salts, X-ray diffraction (XRD) and thermal analysis were performed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.