990 resultados para RENORMALIZATION GROUP
Resumo:
We report results from a first principles calculation of spatially dependent correlation functions around a magnetic impurity in metals described by the nondegenerate Anderson model. Our computations are based on a combination of perturbative scaling theory and numerical renormalization group methods. Results for the conduction election charge density around the impurity and correlation functions involving the conduction electron and impurity charge and spin densities will be presented. The behavior in various regimes including the mixed valent regime will be explored.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
We combine multiple scattering and renormalization group methods to calculate the leading order dimensionless virial coefficient k(s) for the friction coefficient of dilute polymer solutions under conditions where the osmotic second virial coefficient vanishes (i.e., at the theta point T-theta). Our calculations are formulated in terms of coupled kinetic equations for the polymer and solvent, in which the polymers are modeled as continuous chains whose configurations evolve under the action of random forces in, the velocity field of the solvent. To lowest order in epsilon=4-d, we find that k(s) = 1.06. This result compares satisfactorily with existing experimental estimates of k(s), which are in the range 0.7-0.8. It is also in good agreement with other theoretical results on chains and suspensions at T-theta. Our calculated k(s) is also found to be identical to the leading order virial coefficient of the tracer friction coefficient at the theta point. We discuss possible reasons for the difficulties encountered when attempting to evaluate k(s) by extrapolating prior renormalization group calculations from semidilute concentrations to the infinitely dilute limit. (C) 1996 American Institute of Physics.
Resumo:
The symmetrized density-matrix renormalization-group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation delta) to study the ordering of the lowest one-photon (1(1)B(u)(-)) and two-photon (2(1)A(g)(+)) states in one-dimensional conjugated systems with chain lengths N up to N = 80 sites. Three different types of crossovers are studied, as a function of U/t, delta, and N. The ''U crossover'' emphasizes the larger ionic character of the 2A(g) state compared to the lowest triplet excitation. The ''delta crossover'' shows strong dependence on both N and U/t. the ''N crossover'' illustrates the more localized nature of the 2A(g) excitation relative to the 1B(u) excitation at intermediate correlation strengths.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.
Resumo:
The experimental realization of various spin ladder systems has prompted their detailed theoretical investigations. Hen we study the evolution of ground-state magnetization with an external magnetic field for two different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction. The finite system density-matrix renormalization-group method is employed for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magnetization plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero magnetization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magnetization for a certain range of values of the couplings. We study the regions of transitions between plateaus numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model, We also study numerically some low-temperature properties of the three-chain system, such as the magnetization, magnetic susceptibility and specific heat. [S0163-1829(99)303001-5].
Resumo:
The statistical mechanics of a two-dimensional Coulomb gas confined to one dimension is studied, wherein hard core particles move on a ring. Exact self-duality is shown for a version of the sine-Gordon model arising in this context, thereby locating the transition temperature exactly. We present asymptotically exact results for the correlations in the model and characterize the low- and high-temperature phases. Numerical simulations provide support to these renormalization group calculations. Connections with other interesting problems, such as the quantum Brownian motion of a panicle in a periodic potential and impurity problems, are pointed out.
Resumo:
We drive a d-dimensional Heisenberg magnet using an anisotropic current. The continuum Langevin equation is analysed using a dynamical renormalization group and numerical simulations. We discover a rich steady-state phase diagram, including a critical point in a new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may be controlled in a robust manner to target spatially periodic steady states with helical order.
Resumo:
We consider the Finkelstein action describing a system of spin-polarized or spinless electrons in 2+2epsilon dimensions, in the presence of disorder as well as the Coulomb interactions. We extend the renormalization-group analysis of our previous work and evaluate the metal-insulator transition of the electron gas to second order in an epsilon expansion. We obtain the complete scaling behavior of physical observables like the conductivity and the specific heat with varying frequency, temperature, and/or electron density. We extend the results for the interacting electron gas in 2+2epsilon dimensions to include the quantum critical behavior of the plateau transitions in the quantum Hall regime. Although these transitions have a very different microscopic origin and are controlled by a topological term in the action (theta term), the quantum critical behavior is in many ways the same in both cases. We show that the two independent critical exponents of the quantum Hall plateau transitions, previously denoted as nu and p, control not only the scaling behavior of the conductances sigma(xx) and sigma(xy) at finite temperatures T, but also the non-Fermi-liquid behavior of the specific heat (c(v)proportional toT(p)). To extract the numerical values of nu and p it is necessary to extend the experiments on transport to include the specific heat of the electron gas.
Resumo:
We study odd-membered chains of spin-1/2 impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong interimpurity coupling, a residual chain spin-1/2 moment experiences a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely by the ``excess'' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.
Resumo:
We study the bipartite entanglement of strongly correlated systems using exact diagonalization techniques. In particular, we examine how the entanglement changes in the presence of long-range interactions by studying the Pariser-Parr-Pople model with long-range interactions. We compare the results for this model with those obtained for the Hubbard and Heisenberg models with short-range interactions. This study helps us to understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions. To better understand the behavior of long-range interactions and why the DMRG works well with it, we study the entanglement spectrum of the ground state and a few excited states of finite chains. We also investigate if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, we make an interesting observation on the entanglement profiles of different states (across the energy spectrum) in comparison with the corresponding profile of the density of states. We use isotropic chains and a molecule with non-Abelian symmetry for these numerical investigations.
Resumo:
Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic magnetic field, we study the ``fully frustrated'' Bose-Hubbard model with half a magnetic flux quantum per plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI) with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry. We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various experimental implications.
Resumo:
We revisit the extraction of alpha(s)(M-tau(2)) from the QCD perturbative corrections to the hadronic tau branching ratio, using an improved fixed-order perturbation theory based on the explicit summation of all renormalization-group accessible logarithms, proposed some time ago in the literature. In this approach, the powers of the coupling in the expansion of the QCD Adler function are multiplied by a set of functions D-n, which depend themselves on the coupling and can be written in a closed form by iteratively solving a sequence of differential equations. We find that the new expansion has an improved behavior in the complex energy plane compared to that of the standard fixed-order perturbation theory (FOPT), and is similar but not identical to the contour-improved perturbation theory (CIPT). With five terms in the perturbative expansion we obtain in the (MS) over bar scheme alpha(s)(M-tau(2)) = 0.338 +/- 0.010, using as input a precise value for the perturbative contribution to the hadronic width of the tau lepton reported recently in the literature.
Resumo:
Based on the Wilemski-Fixman approach G. Wilemski, M. Fixman, J. Chem. Phys. 60 (1974) 866], we show that, for a flexible chain in theta solvent, hydrodynamic interaction treated with a pre-averaging approximation makes ring closing faster if the chain is not very short. We also show that the ring closing time for a long chain with hydrodynamic interaction in theta solvent scales with the chain length (N) as N-1.5, in agreement with the previous renormalization group calculation based prediction by Freidman and O'Shaughnessy B. Friedman, B. O'Shaughnessy, Phys. Rev. A 40 (1989) 5950]. (C) 2012 Elsevier B.V. All rights reserved.