994 resultados para RELAXATION BEHAVIOR
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed. (C) 2013 AIP Publishing LLC.
Resumo:
The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider the rates of relaxation of a particle in a harmonic well, subject to Levy noise characterized by its Levy index mu. Using the propagator for this Levy-Ornstein-Uhlenbeck process (LOUP), we show that the eigenvalue spectrum of the associated Fokker-Planck operator has the form (n + m mu)nu where nu is the force constant characterizing the well, and n, m is an element of N. If mu is irrational, the eigenvalues are all nondegenerate, but rational mu can lead to degeneracy. The maximum degeneracy is shown to be 2. The left eigenfunctions of the fractional Fokker-Planck operator are very simple while the right eigenfunctions may be obtained from the lowest eigenfunction by a combination of two different step-up operators. Further, we find that the acceptable eigenfunctions should have the asymptotic behavior vertical bar x vertical bar(-n1-n2 mu) as vertical bar x vertical bar -> infinity, with n(1) and n(2) being positive integers, though this condition alone is not enough to identify them uniquely. We also assert that the rates of relaxation of LOUP are determined by the eigenvalues of the associated fractional Fokker-Planck operator and do not depend on the initial state if the moments of the initial distribution are all finite. If the initial distribution has fat tails, for which the higher moments diverge, one can have nonspectral relaxation, as pointed out by Toenjes et al. Phys. Rev. Lett. 110, 150602 (2013)].
Resumo:
Zn1-xMgxO ( <= x <= 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (similar to 1 x 10(4) at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell-Wagner type relaxation phenomena. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The room temperature creep behaviors of Ce-based bulk metallic glasses were examined by the use of nanoindentation. The creep rate and creep rate sensitivity of Ce-based BMGs were derived from indentation creep curves. The low creep rate sensitivity of Ce-based BMGs indicates that the room temperature creep is dominated by localized shear flow. The experimental creep curves can be described by a generalized Kelvin model. Furthermore, the creep retardation spectrum is calculated for the Ce-based metallic glasses. The results showed that creep retardation spectrum consists of two relatively separated peaks with the well defined characteristic relaxation times.
Resumo:
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0 x 10(-4) to 1.0x10(3) s(-1)) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0 x 10(-4)s(-1)). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0 x 10(3) s(-1)), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.
Resumo:
The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The creep and relaxation behaviour of laminated glass fibre reinforced plastics (GRP) in three-point bending were studied both experimentally and analytically. Creep and relaxation experiments were carried out on eight types of specimens, consisting of glass fibre fabric reinforced epoxy beams. While the bending deflexion and creep strains were measured in the creep tests, the load and relaxation strain were recorded in the relaxation tests. Marked creep effects were seen in the tests, where the environment temperature was 50°C and the period of the measurement was 60 min. An attempt to predict the creep deflexion and relaxation behaviour was made. The transverse shear effect on creep deflexion was taken into account. The predicted results were compared with experimental ones. They were found to be in reasonable agreement, but the linearization assumption, upon which the relaxation behaviour analysis was based, appears to lead to larger inaccuracies in the results.
Resumo:
Part I. Novel composite polyelectrolyte materials were developed that exhibit desirable charge propagation and ion-retention properties. The morphology of electrode coatings cast from these materials was shown to be more important for its electrochemical behavior than its chemical composition.
Part II. The Wilhelmy plate technique for measuring dynamic surface tension was extended to electrified liquid-liquid interphases. The dynamical response of the aqueous NaF-mercury electrified interphase was examined by concomitant measurement of surface tension, current, and applied electrostatic potential. Observations of the surface tension response to linear sweep voltammetry and to step function perturbations in the applied electrostatic potential (e.g., chronotensiometry) provided strong evidence that relaxation processes proceed for time-periods that are at least an order of magnitude longer than the time periods necessary to establish diffusion equilibrium. The dynamical response of the surface tension is analyzed within the context of non-equilibrium thermodynamics and a kinetic model that requires three simultaneous first order processes.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.
Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.
The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.
Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.
The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.
Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.
The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.
Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.
In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.
In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.
Resumo:
In nickel-based superalloys, substitutional solute species have a strong impact on in service mechanical properties as well as on oxidation and corrosion resistances. In alloy 718, recent studies carried out by tensile tests highlighted the fact that refractory solute species are able to interact strongly with mobile dislocations during plastic deformation, generating dynamic strain ageing, and, in wide ranges of tests temperatures and strain rates, Portevin-Le Chatelier effect. The precise nature of the substitutional element responsible for such a dynamic interaction is still subject to debate. We addressed this question by means of mechanical spectroscopy studies of alloy 718 and various related alloys corresponding to monitored changes in the chemical composition. Only a single internal friction relaxation peak has been observed for all the studied alloys. By analyzing the damping behavior of these alloys at different imposed solicitation frequencies by sweeping a large temperatures range, the activation energies of the relaxation process and the type of mechanism involved have been determined. The process is a "Zener relaxation" in the alloys, i.e. a substitutional atoms dipole reorientation under applied stress. The results tend to prove that Niobium is not involved in the relaxation process whereas Molybdenum content seems to play an important role in the relaxation intensity.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.
Resumo:
In this paper, we demonstrate the key issues of axial nanowire heterostructures, such as, the fundamental criteria for formation and failure of axial nanowire heterostructures via vapor-liquid-solid mechanism and lateral misfit strain relaxation in these structures. We show the failure of axial nanowire heterostructures by growing InAs axially on GaAs nanowires, and the lateral misfit strain relaxation by axial growth of GaSb on GaAs nanowires. © 2008 IEEE.