104 resultados para REDSHIFTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the Two-Degree Field (2dF) instrument on the Anglo-Australian Telescope (AAT) to obtain redshifts of a sample of z < 3 and 18.0 < g < 21.85 quasars selected from Sloan Digital Sky Survey (SDSS) imaging. These data are part of a larger joint programme between the SDSS and 2dF communities to obtain spectra of faint quasars and luminous red galaxies, namely the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We describe the quasar selection algorithm and present the resulting number counts and luminosity function of 5645 quasars in 105.7 deg(2). The bright-end number counts and luminosity functions agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to g similar to 20.2. However, at the faint end, the 2SLAQ number counts and luminosity functions are steeper (i.e. require more faint quasars) than the final 2QZ results from Croom et al., but are consistent with the preliminary 2QZ results from Boyle et al. Using the functional form adopted for the 2QZ analysis ( a double power law with pure luminosity evolution characterized by a second-order polynomial in redshift), we find a faint-end slope of beta =-1.78 +/- 0.03 if we allow all of the parameters to vary, and beta =-1.45 +/- 0.03 if we allow only the faint-end slope and normalization to vary (holding all other parameters equal to the final 2QZ values). Over the magnitude range covered by the 2SLAQ survey, our maximum-likelihood fit to the data yields 32 per cent more quasars than the final 2QZ parametrization, but is not inconsistent with other g > 21 deep surveys for quasars. The 2SLAQ data exhibit no well-defined 'break' in the number counts or luminosity function, but do clearly flatten with increasing magnitude. Finally, we find that the shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from Type I quasars found in hard X-ray surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have redefined group membership of six southern galaxy groups in the local universe (mean cz < 2000 km s(-1)) based on new redshift measurements from our recently acquired Anglo-Australian Telescope 2dF spectra. For each group, we investigate member galaxy kinematics, substructure, luminosity functions and luminosity-weighted dynamics. Our calculations confirm that the group sizes, virial masses and luminosities cover the range expected for galaxy groups, except that the luminosity of NGC 4038 is boosted by the central starburst merger pair. We find that a combination of kinematical, substructural and dynamical techniques can reliably distinguish loose, unvirialized groups from compact, dynamically relaxed groups. Applying these techniques, we find that Dorado, NGC 4038 and NGC 4697 are unvirialized, whereas NGC 681, NGC 1400 and NGC 5084 are dynamically relaxed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a spectroscopic survey of almost 15 000 candidate intermediate-redshift luminous red galaxies (LRGs) brighter than i = 19.8, observed with 2dF on the Anglo-Australian Telescope. The targets were selected photometrically from the Sloan Digital Sky Survey (SDSS) and lie along two narrow equatorial strips covering 180 deg(2). Reliable redshifts were obtained for 92 per cent of the targets and the selection is very efficient: over 90 per cent have 0.45 < z < 0.8. More than 80 per cent of the similar to 11 000 red galaxies have pure absorption-line spectra consistent with a passively evolving old stellar population. The redshift, photometric and spatial distributions of the LRGs are described. The 2SLAQ data will be released publicly from mid-2006, providing a powerful resource for observational cosmology and the study of galaxy evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of cz= 32 214 +/- 83 km s(-1) (z= 0.10 738 +/- 0.00 027), with a velocity dispersion typical of rich, massive clusters of sigma(cz)= 880(-54)(+66). We find that the cD galaxy has a peculiar velocity of 683 +/- 96 km s(-1) in the cluster rest frame - some 7 sigma away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Standard Cosmological Model is generally accepted by the scientific community, there are still an amount of unresolved issues. From the observable characteristics of the structures in the Universe,it should be possible to impose constraints on the cosmological parameters. Cosmic Voids (CV) are a major component of the LSS and have been shown to possess great potential for constraining DE and testing theories of gravity. But a gap between CV observations and theory still persists. A theoretical model for void statistical distribution as a function of size exists (SvdW) However, the SvdW model has been unsuccesful in reproducing the results obtained from cosmological simulations. This undermines the possibility of using voids as cosmological probes. The goal of our thesis work is to cover the gap between theoretical predictions and measured distributions of cosmic voids. We develop an algorithm to identify voids in simulations,consistently with theory. We inspecting the possibilities offered by a recently proposed refinement of the SvdW (the Vdn model, Jennings et al., 2013). Comparing void catalogues to theory, we validate the Vdn model, finding that it is reliable over a large range of radii, at all the redshifts considered and for all the cosmological models inspected. We have then searched for a size function model for voids identified in a distribution of biased tracers. We find that, naively applying the same procedure used for the unbiased tracers to a halo mock distribution does not provide success- full results, suggesting that the Vdn model requires to be reconsidered when dealing with biased samples. Thus, we test two alternative exten- sions of the model and find that two scaling relations exist: both the Dark Matter void radii and the underlying Dark Matter density contrast scale with the halo-defined void radii. We use these findings to develop a semi-analytical model which gives promising results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM ∼ 17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ∼ 280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies. We analyze the FIR SEDs of two galaxies that are proposed to be very high-redshift (z > 7) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160 μm, with SPIRE/Herschel at 250, 350 and 500 μm and with LABOCA/APEX at 870 μm. We find that redshifts > 7 would imply extreme FIR SEDs (with dust temperatures >100 K and FIR luminosities >10^13 L_⊙). At z ~ 2, instead, the SEDs of both sources would be compatible with those of typical ultra luminous infrared galaxies or submillimeter galaxies. Considering all available data for these sources from visible to FIR we re-estimate the redshifts and find z ~ 1.6–2.5. Owing to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-to-near-IR part of the SEDs even when additional extinction is included. These sources strongly resemble dust-obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at z = 4. Galaxies with similar SEDs could contaminate other high-redshift surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the nature of Infrared Excess sources (IRX), which are proposed as candidates for luminous [L_X(2–10 keV) > 10^43 erg s^−1] Compton thick (NH > 2 × 1024 cm−2) QSOs at z≈ 2. Lower redshift, z≈ 1, analogues of the distant IRX population are identified by first redshifting to z= 2 the spectral energy distributions (SEDs) of all sources with secure spectroscopic redshifts in the AEGIS (6488) and the GOODS-North (1784) surveys and then selecting those that qualify as IRX sources at that redshift. A total of 19 galaxies are selected. The mean redshift of the sample is z≈ 1. We do not find strong evidence for Compton thick QSOs in the sample. For nine sources with X-ray counterparts, the X-ray spectra are consistent with Compton thin active galactic nucleus (AGN). Only three of them show tentative evidence for Compton thick obscuration. The SEDs of the X-ray undetected population are consistent with starburst activity. There is no evidence for a hot dust component at the mid-infrared associated with AGN heated dust. If the X-ray undetected sources host AGN, an upper limit of L_X(2–10 keV) = 10^43 erg s^−1 is estimated for their intrinsic luminosity. We propose that a large fraction of the z≈ 2 IRX population is not Compton thick quasi-stellar objects (QSOs) but low-luminosity [L_X(2–10 keV) < 10^43 erg s^−1], possibly Compton thin, AGN or dusty starbursts. It is shown that the decomposition of the AGN and starburst contribution to the mid-IR is essential for interpreting the nature of this population, as star formation may dominate this wavelength regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a morphology study of intermediate-redshift (0.2 < z < 1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, infrared (IR)-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z = 1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20%-30%). The B-band luminosity functions (LFs) of galaxy mergers are derived at different redshifts up to z = 1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR LFs of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1 + z)^~(5-6)], and that galaxy mergers start to dominate the cosmic IR energy density at z greater than or ~ 1.