937 resultados para RECENT CLINICAL-TRIALS
Resumo:
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors expressed primarily on neurons and glial cells modulating the effects of glutamatergic neurotransmission. The pharmacological manipulation of these receptors has been postulated to be valuable in the management of some neurological disorders. Accordingly, the targeting of mGlu5 receptors as a therapeutic approach for Parkinson's disease (PD) has been proposed, especially to manage the adverse symptoms associated to chronic treatment with classical PD drugs. Thus, the specific pharmacological blocking of mGlu5 receptors constitutes one of the most attractive non-dopaminergic-based strategies for PD management in general and for the L-DOPA-induced diskynesia (LID) in particular. Overall, we provide here an update of the current state of the art of these mGlu5 receptor-based approaches that are under clinical study as agents devoted to alleviate PD symptoms.
Resumo:
Results of subgroup analysis (SA) reported in randomized clinical trials (RCT) cannot be adequately interpreted without information about the methods used in the study design and the data analysis. Our aim was to show how often inaccurate or incomplete reports occur. First, we selected eight methodological aspects of SA on the basis of their importance to a reader in determining the confidence that should be placed in the author's conclusions regarding such analysis. Then, we reviewed the current practice of reporting these methodological aspects of SA in clinical trials in four leading journals, i.e., the New England Journal of Medicine, the Journal of the American Medical Association, the Lancet, and the American Journal of Public Health. Eight consecutive reports from each journal published after July 1, 1998 were included. Of the 32 trials surveyed, 17 (53%) had at least one SA. Overall, the proportion of RCT reporting a particular methodological aspect ranged from 23 to 94%. Information on whether the SA preceded/followed the analysis was reported in only 7 (41%) of the studies. Of the total possible number of items to be reported, NEJM, JAMA, Lancet and AJPH clearly mentioned 59, 67, 58 and 72%, respectively. We conclude that current reporting of SA in RCT is incomplete and inaccurate. The results of such SA may have harmful effects on treatment recommendations if accepted without judicious scrutiny. We recommend that editors improve the reporting of SA in RCT by giving authors a list of the important items to be reported.
Resumo:
Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy) even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause) is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.
Resumo:
Research Question: What are the psychosocial factors that affect causality assessment in early phase oncology clinical trials? Methods: Thirty-two qualitative interviews were explicated with the aid of “Naturalistic Decision Making”. Data explication consisted of phenomenological reduction, delineating and clustering meaning units, forming themes, and creating a composite summary. Participants were members of the National Cancer Institute of Canada’s Clinical Trial Group Investigative New Drug committee. Results: The process of assigning causality is extremely subjective and full of uncertainty. Physicians had no formal training, nor a tool to assist them with this process. Physicians were apprehensive about their decisions and felt pressure from their patients, as well as the pharmaceutical companies sponsoring the trial. Conclusions: There are many problem areas when attributing causality, all of which have serious consequences, but clinicians used a variety of methods to cope with these problem areas.
Resumo:
Afin d’adresser la variabilité interindividuelle observée dans la réponse pharmacocinétique à de nombreux médicaments, nous avons créé un panel de génotypage personnalisée en utilisant des méthodes de conception et d’élaboration d’essais uniques. Celles-ci ont pour but premier de capturer les variations génétiques présentent dans les gènes clés impliqués dans les processus d'absorption, de distribution, de métabolisme et d’excrétion (ADME) de nombreux agents thérapeutiques. Bien que ces gènes et voies de signalement sont impliqués dans plusieurs mécanismes pharmacocinétiques qui sont bien connues, il y a eu jusqu’à présent peu d'efforts envers l’évaluation simultanée d’un grand nombre de ces gènes moyennant un seul outil expérimental. La recherche pharmacogénomique peut être réalisée en utilisant deux approches: 1) les marqueurs fonctionnels peuvent être utilisés pour présélectionner ou stratifier les populations de patients en se basant sur des états métaboliques connus; 2) les marqueurs Tag peuvent être utilisés pour découvrir de nouvelles corrélations génotype-phénotype. Présentement, il existe un besoin pour un outil de recherche qui englobe un grand nombre de gènes ADME et variantes et dont le contenu est applicable à ces deux modèles d'étude. Dans le cadre de cette thèse, nous avons développé un panel d’essais de génotypage de 3,000 marqueurs génétiques ADME qui peuvent satisfaire ce besoin. Dans le cadre de ce projet, les gènes et marqueurs associés avec la famille ADME ont été sélectionnés en collaboration avec plusieurs groupes du milieu universitaire et de l'industrie pharmaceutique. Pendant trois phases de développement de cet essai de génotypage, le taux de conversion pour 3,000 marqueurs a été amélioré de 83% à 97,4% grâce à l'incorporation de nouvelles stratégies ayant pour but de surmonter les zones d'interférence génomiques comprenant entre autres les régions homologues et les polymorphismes sous-jacent les régions d’intérêt. La précision du panel de génotypage a été validée par l’évaluation de plus de 200 échantillons pour lesquelles les génotypes sont connus pour lesquels nous avons obtenu une concordance > 98%. De plus, une comparaison croisée entre nos données provenant de cet essai et des données obtenues par différentes plateformes technologiques déjà disponibles sur le marché a révélé une concordance globale de > 99,5%. L'efficacité de notre stratégie de conception ont été démontrées par l'utilisation réussie de cet essai dans le cadre de plusieurs projets de recherche où plus de 1,000 échantillons ont été testés. Nous avons entre autre évalué avec succès 150 échantillons hépatiques qui ont été largement caractérisés pour plusieurs phénotypes. Dans ces échantillons, nous avons pu valider 13 gènes ADME avec cis-eQTL précédemment rapportés et de découvrir et de 13 autres gènes ADME avec cis eQTLs qui n'avaient pas été observés en utilisant des méthodes standard. Enfin, à l'appui de ce travail, un outil logiciel a été développé, Opitimus Primer, pour aider pour aider au développement du test. Le logiciel a également été utilisé pour aider à l'enrichissement de cibles génomiques pour d'expériences séquençage. Le contenu ainsi que la conception, l’optimisation et la validation de notre panel le distingue largement de l’ensemble des essais commerciaux couramment disponibles sur le marché qui comprennent soit des marqueurs fonctionnels pour seulement un petit nombre de gènes, ou alors n’offre pas une couverture adéquate pour les gènes connus d’ADME. Nous pouvons ainsi conclure que l’essai que nous avons développé est et continuera certainement d’être un outil d’une grande utilité pour les futures études et essais cliniques dans le domaine de la pharmacocinétique, qui bénéficieraient de l'évaluation d'une longue liste complète de gènes d’ADME.
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data. Many of the issues that are discussed with reference to the statistical analysis of compositional data have a natural counterpart in the construction of a Bayesian statistical model for categorical data. This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986) in his seminal book on compositional data. Particular emphasis is put on the problem of what parameterization to use
Resumo:
This paper introduces a simple futility design that allows a comparative clinical trial to be stopped due to lack of effect at any of a series of planned interim analyses. Stopping due to apparent benefit is not permitted. The design is for use when any positive claim should be based on the maximum sample size, for example to allow subgroup analyses or the evaluation of safety or secondary efficacy responses. A final frequentist analysis can be performed that is valid for the type of design employed. Here the design is described and its properties are presented. Its advantages and disadvantages relative to the use of stochastic curtailment are discussed. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
This article describes an approach to optimal design of phase II clinical trials using Bayesian decision theory. The method proposed extends that suggested by Stallard (1998, Biometrics54, 279–294) in which designs were obtained to maximize a gain function including the cost of drug development and the benefit from a successful therapy. Here, the approach is extended by the consideration of other potential therapies, the development of which is competing for the same limited resources. The resulting optimal designs are shown to have frequentist properties much more similar to those traditionally used in phase II trials.
Resumo:
There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.
Resumo:
This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.