952 resultados para REACTIVE MECHANISM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may trigger cell death with pathological consequences in cardiovascular or neurodegenerative disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species (ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes the systematic characterization of the kinetics of ROS/RNS production and their roles in cell survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was dependent on the production of mitochondrial superoxide (O2-•) and nitric oxide (•NO), partly from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell death via a O2-• dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased production of O2-• and •NO, during hypoxia but, partially restored during reperfusion. O2-• generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas •NO generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 activation during 2% O2, a sustained hypoxia and reperfusion was O2-•/•NO dependent. Inhibition of NF-?B activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, mitochondrial O2-•, but, not ATP depletion is the major cause of apoptotic and necrotic cell death in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is due to NOS-dependent •NO. The management of ROS/RNS rather than ATP is required for improved survival during hypoxia. O2-• production from mitochondria and NOS is cardiotoxic during hypoxia/reperfusion. NF-?B activation during hypoxia and NOS activation during reperfusion is cardiomyoblast protective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of murine myotubes with high glucose concentrations (10 and 25 mM) stimulated protein degradation through the ubiquitin–proteasome pathway, and also caused activation (autophosphorylation) of PKR (double-stranded-RNA-dependent protein kinase) and eIF2a (eukaryotic initiation factor 2a). Phosphorylation of PKR and eIF2a was also seen in the gastrocnemius muscle of diabetic ob/ob mice. High glucose levels also inhibited protein synthesis. The effect of glucose on protein synthesis and degradation was not seen in myotubes transfected with a catalytically inactive variant (PKR?6). High glucose also induced an increased activity of both caspase-3 and -8, which led to activation of PKR, since this was completely attenuated by the specific caspase inhibitors. Activation of PKR also led to activation of p38MAPK (mitogen activated protein kinase), leading to ROS (reactive oxygen species) formation, since this was attenuated by the specific p38MAPK inhibitor SB203580. ROS formation was important in protein degradation, since it was completely attenuated by the antioxidant butylated hydroxytoluene. These results suggest that high glucose induces muscle atrophy through the caspase-3/-8 induced activation of PKR, leading to phosphorylation of eIF2a and depression of protein synthesis, together with PKR-mediated ROS production, through p38MAPK and increased protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDSNHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E-Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Adverse drug reactions (ADRs) are undesirable effects caused after administration of a single dose or prolonged administration of drug or result from the combination of two or more drugs. Idiosyncratic drug reaction (IDR) is an adverse reaction that does not occur in most patients treated with a drug and does not involve the therapeutic effect of the drug. IDRs are unpredictable and often life-threatening. Idiosyncratic reaction is dependent on drug chemical characteristics or individual immunological response. IDRs are a major problem for drug development because they are usually not detected during clinical trials. In this study we focused on IDRs of Nevirapine (NVP), which is a non-nucleoside reverse transcriptase inhibitor used for the treatment of Human Immunodeficiency Virus (HIV) infections. The use of NVP is limited by a relatively high incidence of skin rash. NVP also causes a rash in female Brown Norway (BN) rats, which we use as animal model for this study. Our hypothesis is that idiosyncratic skin reactions associated with NVP treatment are due to post-translational modifications of proteins (e.g., glutathionylation) detectable by MS. The main objective of this study was to identify the proteins that are targeted by a reactive metabolite of Nevirapine in the skin. The specific objectives derived from the general objective were as follow: 1) To implement the click chemistry approach to detect proteins modified by a reactive NVP-Alkyne (NVP-ALK) metabolite. The purpose of using NVP-ALK was to couple it with Biotin using cycloaddition Click Chemistry reaction. 2) To detect protein modification using Western blotting and Mass Spectrometry techniques, which is important to understand the mechanism of NVP induced toxicity. 3) To identify the proteins using MASCOT search engine for protein identification, by comparing obtained spectrum from Mass Spectrometry with theoretical spectrum to find a matching peptide sequence. 4) To test if the drug or drug metabolites can cause harmful effects, as the induction of oxidative stress in cells (via protein glutathionylation). Oxidative stress causes cell damage that mediates signals, which likely induces the immune response. The results showed that Nevirapine is metabolized to a reactive metabolite, which causes protein modification. The extracted protein from the treated BN rats matched 10% of keratin, which implies that keratin was the protein targeted by the NVP-ALK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.