980 resultados para RBCL SEQUENCE ANALYSES
Resumo:
The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656–2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.
Resumo:
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism.
Resumo:
The herpes simplex virus type 1 origin of DNA replication, oriS, contains three copies of the recognition sequence for the viral initiator protein, origin binding protein (OBP), arranged in two palindromes. The central box I forms a short palindrome with box III and a long palindrome with box II. Single-stranded oriS adopts a conformation, oriS*, that is tightly bound by OBP. Here we demonstrate that OBP binds to a box III–box I hairpin with a 3′ single-stranded tail in oriS*. Mutations designed to destabilize the hairpin abolish the binding of OBP to oriS*. The same mutations also inhibit DNA replication. Second site complementary mutations restore binding of OBP to oriS* as well as the ability of mutated oriS to support DNA replication. OriS* is also an efficient activator of the hydrolysis of ATP by OBP. Sequence analyses show that a box III–box I palindrome is an evolutionarily conserved feature of origins of DNA replication from human, equine, bovine, and gallid alpha herpes viruses. We propose that oriS facilitates initiation of DNA synthesis in two steps and that OBP exhibits exquisite specificity for the different conformations oriS adopts at these stages. Our model suggests that distance-dependent cooperative binding of OBP to boxes I and II in duplex DNA is succeeded by specific recognition of a box III–box I hairpin in partially unwound DNA.
Resumo:
We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.
Resumo:
An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.
Resumo:
The relationship of the important cellulase producing asexual fungus Trichoderma reesei to its putative teleomorphic (sexual) ancestor Hypocrea jecorina and other species of the Trichoderma sect. Longibrachiatum was studied by PCR-fingerprinting and sequence analyses of the nuclear ribosomal DNA region containing the internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S rRNA gene. The differences in the corresponding ITS sequences allowed a grouping of anamorphic (asexual) species of Trichoderma sect. Longibrachiatum into Trichoderma longibrachiatum, Trichoderma pseudokoningii, and Trichoderma reesei. The sexual species Hypocrea schweinitzii and H. jecorina were also clearly separated from each other. H. jecorina and T. reesei exhibited identical sequences, suggesting close relatedness or even species identity. Intraspecific and interspecific variation in the PCR-fingerprinting patterns supported the differentiation of species based on ITS sequences, the grouping of the strains, and the assignment of these strains to individual species. The variations between T. reesei and H. jecorina were at the same order of magnitude as found between all strains of H. jecorina, but much lower than the observed interspecific variations. Identical ITS sequences and the high similarity of PCR-fingerprinting patterns indicate a very close relationship between T. reesei and H. jecorina, whereas differences of the ITS sequences and the PCR-fingerprinting patterns show a clear phylogenetic distance between T. reesei/H. jecorina and T. longibrachiatum. T. reesei is considered to be an asexual, clonal line derived from a population of the tropical ascomycete H. jecorina.
Resumo:
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Resumo:
Glycoproteins expressing the Lutheran blood group antigens were isolated from human erythrocyte membranes and from human fetal liver. Amino acid sequence analyses allowed the design of redundant oligonucleotides that were used to generate a 459-bp, sequence-specific probe by PCR. A cDNA clone of 2400 bp was isolated from a human placental lambda gt 11 library and sequenced, and the deduced amino acid sequence was studied. The predicted mature protein is a type I membrane protein of 597 amino acids with five potential N-glycosylation sites. There are five disulfide-bonded, extracellular, immunoglobulin superfamily domains (two variable-region set and three constant-region set), a single hydrophobic, membrane-spanning domain, and a cytoplasmic domain of 59 residues. The overall structure is similar to that of the human tumor marker MUC 18 and the chicken neural adhesion molecule SC1. The extracellular domains and cytoplasmic domain contain consensus motifs for the binding of integrin and Src homology 3 domains, respectively, suggesting possible receptor and signal-transduction function. Immunostaining of human tissues demonstrated a wide distribution and provided evidence that the glycoprotein is under developmental control in liver and may also be regulated during differentiation in other tissues.
Resumo:
Deep polar ice cores provide atmospheric records of nitrous oxide (N₂O) and other trace gases reflecting climate history along with a parallel archive of microbial cells transported with mineral dust, marine and volcanic aerosols from around the globe. Our interdisciplinary study of 32 samples from different depths of the recently drilled NEEM Greenland ice core addressed the question whether the identified microorganisms were capable of post-depositional biological production of N₂O in situ. We used high-resolution geochemical and microbiological approaches to examine the N₂O concentrations, the quantitative distributions of dust, Ca⁺², NH₄⁺ and NO₃⁻ ¡ons related to N cycle pathways, the microbial abundance and diversity at specific NEEM core depths from 1758 m to 1867.8 m. Results showed varying concentrations of N₂O (220 –271.5 ppb). Microbial abundance fluctuated between 3.3 x 10⁴ and 3.3 x 10⁶ cells mL⁻¹ in direct correlation with dust and Ca²⁺ concentrations with higher cell numbers deposited during colder periods. The average values of NH₄⁺ and NO₃⁻ indicated that substrates were available for the microorganisms capable of utilizing them. PCR amplification of selected functional genes involved in bacterial and archaeal nitrification and denitrification was not successful. Sanger and Illumina MiSeq sequence analyses of SSU rRNA genes showed variable representation of Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Actinobacteria, chloroplasts and fungi. The metabolic potential of the dominant genera of Proteobacteria and Firmicutes as possible N₂O producers suggested that denitrification activity may have led to in-situ production and accumulation of N₂O.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Manual curation has long been held to be the gold standard for functional annotation of DNA sequence. Our experience with the annotation of more than 20,000 full-length cDNA sequences revealed problems with this approach, including inaccurate and inconsistent assignment of gene names, as well as many good assignments that were difficult to reproduce using only computational methods. For the FANTOM2 annotation of more than 60,000 cDNA clones, we developed a number of methods and tools to circumvent some of these problems, including an automated annotation pipeline that provides high-quality preliminary annotation for each sequence by introducing an uninformative filter that eliminates uninformative annotations, controlled vocabularies to accurately reflect both the functional assignments and the evidence supporting them, and a highly refined, Web-based manual annotation tool that allows users to view a wide array of sequence analyses and to assign gene names and putative functions using a consistent nomenclature. The ultimate utility of our approach is reflected in the low rate of reassignment of automated assignments by manual curation. Based on these results, we propose a new standard for large-scale annotation, in which the initial automated annotations are manually investigated and then computational methods are iteratively modified and improved based on the results of manual curation.
Resumo:
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another I I species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.
Resumo:
A single-tube RT-PCR technique generated a 387 bp or 300 bp cDNA amplicon covering the F-0 cleavage site or the carboxyl (C)-terminus of the HN gene, respectively, of Newcastle disease virus (NDV) strain 1-2. Sequence analysis was used to deduce the amino acid sequences of the cleavage site of F protein and the C-terminus of HN protein, which were then compared with sequences for other NDV strains. The cleavage site of NDV strain 1-2 had a sequence Motif of (112)RKQGRLIG(119), consistent with an avirulent phenotype. Nucleotide sequencing and deduction of amino acids at the C-terminus of HN revealed that strain 1-2 had a 7-amino-acid extension (VEILKDGVREARSSR). This differs from the virulent viruses that caused outbreaks of Newcastle disease in Australia in the 1930s and 1990s, which have HN extensions of 0 and 9 amino acids, respectively. Amino acid sequence analyses of the F and HN genes of strain 1-2 confirmed its avirulent nature and its Australian origin.
Resumo:
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments. It is one of the leading causes of morbidity and mortality in cystic fibrosis patients, and one of the main sources of nosocomial infections in the United States. One of the most prominent features of this pathogen is its wide resistance to antibiotics. P. aeruginosa employs a variety of mechanisms including efflux pumps and the expression of B-lactamases to overcome antibiotic treatment. Two chromosomally encoded lactamases, ampC and poxB, have been identified in P. aeruginosa. Sequence analyses have shown the presence of a two-component system (TCS) called MifSR (MifS-Sensor and MifR-Response Regulator), immediately upstream of the poxAB operon. It is hypothesized that the MifSR TCS is involved in B-lactam resistance via the regulation of poxB. Recently, the response regulator MifR has been reported to play a crucial role in biofilm formation, a major characteristic of chronic infections and increased antibiotic resistance. In this study, mifR and mifSR deletion mutants were constructed, and compared to the wild type parent strain PAOl for differences in growth and B-lactam sensitivity. Results obtained thus far indicate that mifR and mifSR are not essential for growth, and do not confer B-lactam resistance under the conditions tested. This study is significant because biofilm formation and antibiotic resistance are two hallmarks of P. aeruginosa infections, and finding a link between these two may lead to the development of improved treatment strategies.
Resumo:
Lower jaws (containing the teeth), eyes, and skin samples were collected from harp seals (Pagophilus groenlandicus) in the southeastern Barents Sea for the purpose of comparing age estimates obtained by 3 different methods, the traditional technique of counting growth layer groups (GLGs) in teeth and 2 novel approaches, aspartic acid racemization (AAR) in eye lens nuclei and telomere sequence analyses as a proxy for telomere length. A significant correlation between age estimates obtained using GLGs and AAR was found, whereas no correlation was found between GLGs and telomere length. An AAR rate (k Asp) of 0.00130/year ± 0.00005 SE and a D-enantiomer to L-enantiomer ratio at birth (D/L 0 value) of 0.01933 ± 0.00048 SE were estimated by regression of D/L ratios against GLG ages from 25 animals (12 selected teeth that had high readability and 13 known-aged animals). AAR could prove to be useful, particularly for ageing older animals in species such as harp seals where difficulties in counting GLGs tend to increase with age. Age estimation by telomere length did not show any correlation with GLG ages and is not recommended for harp seals.