947 resultados para Quantitative structure-activity relationship


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 +/- 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraction of dibenzothiophene from dodecane using ionic liquids as the extracting phase has been investigated for a range of ionic liquids with varying cation classes (imidazolium, pyridinium, and pyrrolidinium) and a range of anion types using liquid-liquid partition studies and QSPR (quantitative structure-activity relationship) analysis. The partition ratio of dibenzothiophene to the ionic liquids showed a clear variation with cation class (dimethylpyridinium > methylpyridinium > pyridinium approximate to imidazolium approximate to pyrrolidinium), with much less significant variation with anion type. Polyaromatic quinolinium-based ionic liquids showed even greater extraction potential, but were compromised by higher melting points. For example, 1-butyl-6-methylquinolinium bis{(trifluoromethyl)sulfonyl} amide (mp 47 degrees C) extracted 90% of the available dibenzothiophene from dodecane at 60 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’asthme professionnel est une maladie fréquente, qui coûte cher, qui touche des travailleurs jeunes, dont le diagnostic est difficile et avec d’importantes conséquences socio-économiques. La prévention occupe une place centrale dans la gestion de l’asthme professionnel, d’un point de vue de santé publique. Ce mémoire de maîtrise présente trois articles rapportant des développements récents en matière de prévention de l’asthme professionnel. Tout d’abord, une revue de la littérature sur les agents sensibilisants de bas poids moléculaire dans l’asthme professionnel entre 2000 et 2010 recense 41 nouveaux agents et insiste sur l’importance de mettre à jour régulièrement les bases de données afin d’améliorer la prévention primaire. Ensuite, basé sur un cas clinique, la deuxième publication présente l’utilité potentielle du modèle d’analyse de risque QSAR (Quantitative Structure-Activity Relationship) dans le processus diagnostique de l’asthme professionnel, notamment lors d’une exposition multiple à des agents sensibilisants. Enfin, le troisième article présente la performance en milieu clinique du premier questionnaire de dépistage spécifique à l’asthme professionnel. Un modèle simple associant 8 items du questionnaire, l’âge des travailleurs et leur durée d’exposition professionnelle permet de discriminer 80% des 169 sujets adressés pour suspicion d’asthme professionnel. Un tel modèle pourrait être intégré dans les programmes de surveillance médicale qui constituent la base de la prévention secondaire. Ces trois publications insistent sur les possibilités d’explorer de nouveaux outils préventifs dans le domaine de l’asthme professionnel, outils qui ouvrent des perspectives de développements futurs dont les implications cliniques et socio-économiques peuvent être importantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La present tesi està centrada en l'ús de la Teoria de Semblança Quàntica per a calcular descriptors moleculars. Aquests descriptors s'utilitzen com a paràmetres estructurals per a derivar correlacions entre l'estructura i la funció o activitat experimental per a un conjunt de compostos. Els estudis de Relacions Quantitatives Estructura-Activitat són d'especial interès per al disseny racional de molècules assistit per ordinador i, en particular, per al disseny de fàrmacs. Aquesta memòria consta de quatre parts diferenciades. En els dos primers blocs es revisen els fonaments de la teoria de semblança quàntica, així com l'aproximació topològica basada en la teoria de grafs. Ambdues teories es fan servir per a calcular els descriptors moleculars. En el segon bloc, s'ha de remarcar la programació i implementació de programari per a calcular els anomenats índexs topològics de semblança quàntica. La tercera secció detalla les bases de les Relacions Quantitatives Estructura-Activitat i, finalment, el darrer apartat recull els resultats d'aplicació obtinguts per a diferents sistemes biològics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new triphenyltin(IV) complexes of composition Ph3SnLH (where LH = 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1–4) were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The 119Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph3SnL1H (1), Ph3SnL3H (3), Ph3SnL4H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; 119Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1–4, along with a previously reported complex (5) in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with the results from other related triphenyltin(IV) complexes (6–7) and tributyltin(IV) complexes (8–11) having 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates framework. In general, the complexes exhibit stronger cytotoxic activity. The results obtained for 1–3 are also comparable to those of its o-analogs i.e. 4–7, except 5, but the advantage is the former set of complexes demonstrated two folds more cytotoxic activity for the cell line MCF-7 with ID50 values in the range 41–53 ng/ml. Undoubtedly, the cytotoxic results of complexes 1–3 are far superior to CDDP, 5-FU and ETO, and related tributyltin(IV) complexes 8–11. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of triphenyltin(IV) complexes 1–7 and tributyltin(IV) complexes 8–11 is also discussed against a panel of human tumor cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structureactivity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the a3 beta 4 nAChR heterologously expressed in KXa3 beta 4R2 cells. Affinity values (log[1/IC50]) of these compounds for the a3 beta 4 nAChR were determined by their competition with [3H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structureactivity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of drugs and biologically relevant molecules contain heterocyclic systems. Often the presence of hetero atoms or groupings imparts preferential specificities in their biological responses. Amongst the heterocyclic systems, thiazolidine is a biologically important scaffold known to be associated with several biological activities. Some of the prominent biological responses attributed to this skeleton are antiviral, antibacterial, antifungal, antihistaminic, hypoglycemic, anti-inflammatory activities. This diversity in the biological response profiles of thiazolidine has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. Many of these synthetic and biological explorations have been subsequently analyzed in detailed quantitative structure-activity relationship (QSAR) studies to correlate the respective structural features and physicochemical properties with the activities to identify the important structural components in deciding their activity behavior. In this, drugs or any biologically active molecules may be viewed as structural frames consisting of strategically positioned functional groups that will interact effectively with the complementary groups/sites of the receptor. With this in focus, the present article reviews the QSAR studies of diverse biological activities of the thiazolidines published during the past decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro incubation of acetylcholinesterase from brain tissue of several species with organophosphate compounds indicated that the concentrations required to inhibit 50% of acetylcholinesterase activity (IC(,50)) differed from species to species for the same compound (Murphy, et al., 1968; Andersen, et al., 1972, 1977 and 1978).^ The hypothesis that non-specific binding proteins (Lauwerys and Murphy, 1969a,b) exerts a protective effect on acetylcholinesterase, and thus cause the differences observed in IC(,50) studies was tested by a ('3)H-DFP binding experiment. It was found that differences in the amount of non-specific binding protein cannot explain the observed differences observed in IC(,50) studies.^ An alternative hypothesis, that acetylcholinesterase from different species have different affinities for binding and/or different rates of phosphorylation by organophosphate insecticides was tested by determining the apparent affinity constant (k(,a)) and apparent rate of phosphorylation (k(,p)). Kinetic studies indicated that acetylcholinesterases from different species have different sensitivities to inhibition by organophosphate insecticides, and the differences are due to different affinities for binding and/or different rates of phosphorylation by the same organophosphate compound.^ Studies of the spontaneous reactivation of acetylcholinesterase after inhibition by organophosphate insecticides also indicated that acetylcholinesterases from different species have different rates and extents of spontaneous reactivation. This further substantiates the hypothesis that acetylcholinesterases from different species have different kinetic characteristics with respect to organophosphate insecticides inhibition.^ Eleven paraoxon analogs were synthesized for a quantitative structure-activity relationship study. It was found that the electron-withdrawing power ((sigma)) and hydrophobicity ((PARAGR)) of the substituent are important in determining the anti-cholinesterase activity of paraoxon analogs. Thus, predictions of species differences in acetylcholinesterase sensitivities to paraoxon analogs can be made if the physicochemical parameters ((sigma) and (PARAGR)) of the substituents are known.^ In another approach, i.e. enzyme modeling, the sensitivity of rat brain acetylcholinesterase to organophosphate insecticides was used as the independent variable to predict the sensitivities of acetylcholinesterases from other species to the same compound. Regression equations were derived for each species based on nineteen organophosphate insecticides studied. It was found, that in addition to paraoxon analogs, this method is also applicable to other organophosphate compounds with wide variations in structure. Thus, the sensitivities of acetylcholinesterases from other species can also be predicted from the sensitivity of rat brain acetylcholinesterase. ^