867 resultados para Quadratic filter
Resumo:
This paper presents an analysis of an optimal linear filter in the presence of constraints on the moan squared values of the estimates from the viewpoint of singular optimal control. The singular arc has been shown to satisfy the generalized Legcndrc-Clebseh condition and Jacobson's condition. Both the cases of white measurement noise and coloured measurement noise are considered. The constrained estimate is shown to be a linear transformation of the unconstrained Kalman estimate.
Resumo:
The possible equivalence of second-order non-linear systems having quadratic and cubic damping with third-order linear systems is studied in this paper. It is shown that this equivalence can be established through transformation techniques under certain constraints on the form of the non-linearity of the given system.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
In this paper, we consider robust joint linear precoder/receive filter designs for multiuser multi-input multi-output (MIMO) downlink that minimize the sum mean square error (SMSE) in the presence of imperfect channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. We consider a stochastic error (SE) model and a norm-bounded error (NBE) model for the CSIT error. In the case of CSIT error following SE model, we compute the desired downlink precoder/receive filter matrices by solving the simpler uplink problem by exploiting the uplink-downlink duality for the MSE region. In the case of the CSIT error following the NBE model, we consider the worst-case SMSE as the objective function, and propose an iterative algorithm for the robust transceiver design. The robustness of the proposed algorithms to imperfections in CSIT is illustrated through simulations.
Resumo:
Social media platforms risk polarising public opinions by employing proprietary algorithms that produce filter bubbles and echo chambers. As a result, the ability of citizens and communities to engage in robust debate in the public sphere is diminished. In response, this paper highlights the capacity of urban interfaces, such as pervasive displays, to counteract this trend by exposing citizens to the socio-cultural diversity of the city. Engagement with different ideas, networks and communities is crucial to both innovation and the functioning of democracy. We discuss examples of urban interfaces designed to play a key role in fostering this engagement. Based on an analysis of works empirically-grounded in field observations and design research, we call for a theoretical framework that positions pervasive displays and other urban interfaces as civic media. We argue that when designed for more than wayfinding, advertisement or television broadcasts, urban screens as civic media can rectify some of the pitfalls of social media by allowing the polarised user to break out of their filter bubble and embrace the cultural diversity and richness of the city.
Resumo:
The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF's noise covariances. (C) 2010 Optical Society of America
Resumo:
We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, β, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high β values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal−porphyrin core, resulting in a large β value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, β0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree−Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.
Resumo:
Half sandwich complexes of the type [CpM(CO)(n)X] {X=Cl, Br, I; If, M=Fe, Ru; n=2 and if M=Mo; n=3} and [CpNiPPh3X] {X=Cl, Br, I} have been synthesized and their second order molecular nonlinearity (beta) measured at 1064 nm in CHCl3 by the hyper-Rayleigh scattering technique. Iron complexes consistently display larger beta values than ruthenium complexes while nickel complexes have marginally larger beta values than iron complexes. In the presence of an acceptor ligand such as CO or PPh3, the role of the halogen atom is that of a pi donor. The better overlap of Cl orbitals with Fe and Ni metal centres make Cl a better pi donor than Br or I in the respective complexes. Consequently, M-pi interaction is stronger in Fe/Ni-Cl complexes. The value of beta decreases as one goes down the halogen group. For the complexes of 4d metal ions where the metal-ligand distance is larger, the influence of pi orbital overlap appears to be less important, resulting in moderate changes in beta as a function of halogen substitution. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This article presents the analysis and design of a compact multi-layer layer, high selectivity wideband bandpass filter using stub loaded and `U' shaped resonators over a slotted bottom ground plane. While the resonators with folded open circuit stub loadings create the desired bandpass characteristics. the IT shaped resonators reduce the size of filter. The slotted bottom ground plane is used to enhance the coupling to achieve the desired bandwidth. The proposed filter has been analyzed using circuit model, and the results were verified through full wave simulations and measurements. The fabricated filter is compact and measures a size of 18 mm x 25 mm x 1.6 MM. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1387-1389, 2010: Published online in Wiley InterScience (www.interscience.wiley.com).
Resumo:
This paper considers the problem of the design of the quadratic weir notch, which finds application in the proportionate method of flow measurement in a by-pass, such that the discharge through it is proportional to the square root of the head measured above a certain datum. The weir notch consists of a bottom in the form of a rectangular weir of width 2W and depth a over which a designed curve is fitted. A theorem concerning the flow through compound weirs called the “slope discharge continuity theorem” is discussed and proved. Using this, the problem is reduced to the determination of an exact solution to Volterra's integral equation in Abel's form. It is shown that in the case of a quadratic weir notch, the discharge is proportional to the square root of the head measured above a datum Image a above the crest of the weir. Further, it is observed that the function defining the shape of the weir is rapidly convergent and its value almost approximates to zero at distances of 3a and above from the crest of the weir. This interesting and significant behaviour of the function incidentally provides a very good approximate solution to a particular Fredholm integral equation of the first kind, transforming the notch into a device called a “proportional-orifice”. A new concept of a “notch-orifice” capable of passing a discharge proportional to the square root of the head (above a particular datum) while acting both as a notch, and as an orifice, is given. A typical experiment with one such notch-orifice, having A = 4 in., and W = 6 in., shows a remarkable agreement with the theory and is found to have a constant coefficient of discharge of 0.61 in the ranges of both notch and orifice.
Resumo:
The matched filter method for detecting a periodic structure on a surface hidden behind randomness is known to detect up to (r(0)/Lambda) gt;= 0.11, where r(0) is the coherence length of light on scattering from the rough part and 3 is the wavelength of the periodic part of the surface-the above limit being much lower than what is allowed by conventional detection methods. The primary goal of this technique is the detection and characterization of the periodic structure hidden behind randomness without the use of any complicated experimental or computational procedures. This paper examines this detection procedure for various values of the amplitude a of the periodic part beginning from a = 0 to small finite values of a. We thus address the importance of the following quantities: `(a)lambda) `, which scales the amplitude of the periodic part with the wavelength of light, and (r(0))Lambda),in determining the detectability of the intensity peaks.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.
Resumo:
The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.