970 resultados para QUANTUM-EFFICIENCY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improve­ment of III-nitride LED performance [1]. External quantum ef­ficiency ηe (EQE) provides integral information on the recom­bination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible car­rier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correla­tion between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, provid­ing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical rela­tionships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABC­model. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure las­ers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sufficiently complex set of molecules, if subject to perturbation, will self-organise and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilise information. Recent research suggest that from its inception life embraced quantum effects such as “tunnelling” and “coherence” while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis – a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, while inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy ageing, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our work focuses on experimental and theoretical studies aimed at establishing a fundamental understanding of the principal electrical and optical processes governing the operation of quantum dot solar cells (QDSC) and their feasibility for the realization of intermediate band solar cell (IBSC). Uniform performance QD solar cells with high conversion efficiency have been fabricated using carefully calibrated process recipes as the basis of all reliable experimental characterization. The origin for the enhancement of the short circuit current density (Jsc) in QD solar cells was carefully investigated. External quantum efficiency (EQE) measurements were performed as a measure of the below bandgap distribution of transition states. In this work, we found that the incorporation of self-assembled quantum dots (QDs) interrupts the lattice periodicity and introduce a greatly broadened tailing density of states extending from the bandedge towards mid-gap. A below-bandgap density of states (DOS) model with an extended Urbach tail has been developed. In particular, the below-bandgap photocurrent generation has been attributed to transitions via confined energy states and background continuum tailing states. Photoluminescence measurement is used to measure the energy level of the lowest available state and the coupling effect between QD states and background tailing states because it results from a non-equilibrium process. A basic I-V measurement reveals a degradation of the open circuit voltage (Voc) of QD solar cells, which is related to a one sub-bandgap photon absorption process followed by a direct collection of the generated carriers by the external circuit. We have proposed a modified Shockley-Queisser (SQ) model that predicts the degradation of Voc compared with a reference bulk device. Whenever an energy state within the forbidden gap can facilitate additional absorption, it can facilitate recombination as well. If the recombination is non-radiative, it is detrimental to solar cell performance. We have also investigated the QD trapping effects as deep level energy states. Without an efficient carrier extraction pathway, the QDs can indeed function as mobile carriers traps. Since hole energy levels are mostly connected with hole collection under room temperature, the trapping effect is more severe for electrons. We have tried to electron-dope the QDs to exert a repulsive Coulomb force to help improve the carrier collection efficiency. We have experimentally observed a 30% improvement of Jsc for 4e/dot devices compared with 0e/dot devices. Electron-doping helps with better carrier collection efficiency, however, we have also measured a smaller transition probability from valance band to QD states as a direct manifestation of the Pauli Exclusion Principle. The non-linear performance is of particular interest. With the availability of laser with on-resonance and off-resonance excitation energy, we have explored the photocurrent enhancement by a sequential two-photon absorption (2PA) process via the intermediate states. For the first time, we are able to distinguish the nonlinearity effect by 1PA and 2PA process. The observed 2PA current under off-resonant and on-resonant excitation comes from a two-step transition via the tailing states instead of the QD states. However, given the existence of an extended Urbach tail and the small number of photons available for the intermediate states to conduction band transition, the experimental results suggest that with the current material system, the intensity requirement for an observable enhancement of photocurrent via a 2PA process is much higher than what is available from concentrated sun light. In order to realize the IBSC model, a matching transition strength needs to be achieved between valance band to QD states and QD states to conduction band. However, we have experimentally shown that only a negligible amount of signal can be observed at cryogenic temperature via the transition from QD states to conduction band under a broadband IR source excitation. Based on the understanding we have achieved, we found that the existence of the extended tailing density of states together with the large mismatch of the transition strength from VB to QD and from QD to CB, has systematically put into question the feasibility of the IBSC model with QDs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Homoepitaxial ZnO/(Zn,Mg)O multiple quantum wells (MQWs) grown with m- and r-plane orientations are used to demonstrate Schottky photodiodes sensitive to the polarization state of light. In both orientations, the spectral photoresponse of the MQW photodiodes shows a sharp excitonic absorption edge at 3.48 eV with a very low Urbach tail, allowing the observation of the absorption from the A, B and C excitonic transitions. The absorption edge energy is shifted by ∼30 and ∼15 meV for the m- and r-plane MQW photodiodes, respectively, in full agreement with the calculated polarization of the A, B, and C excitonic transitions. The best figures of merit are obtained for the m-plane photodiodes, which present a quantum efficiency of ∼11%, and a specific detectivity D* of ∼6.4 × 1010 cm Hz1/2/W. In these photodiodes, the absorption polarization sensitivity contrast between the two orthogonal in-plane axes yields a maximum value of (R⊥/R||)max ∼ 9.9 with a narrow bandwidth of ∼33 meV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few-layer graphene films were grown by chemical vapor deposition and transferred onto n-type crystalline silicon wafers to fabricate graphene/n-silicon Schottky barrier solar cells. In order to increase the power conversion efficiency of such cells the graphene films were doped with nitric acid vapor and an antireflection treatment was implemented to reduce the sunlight reflection on the top of the device. The doping process increased the work function of the graphene film and had a beneficial effect on its conductivity. The deposition of a double antireflection coating led to an external quantum efficiency up to 90% across the visible and near infrared region, the highest ever reported for this type of devices. The combined effect of graphene doping and antireflection treatment allowed to reach a power conversion efficiency of 8.5% exceeding the pristine (undoped and uncoated) device performance by a factor of 4. The optical properties of the antireflection coating were found to be not affected by the exposure to nitric acid vapor and to remain stable over time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been an outstanding problem that a semiconducting host in the bulk form can be doped to a large extent, while the same host in the nanocrystal form is found to resist any appreciable level of doping rather stubbornly, this problem being more acute in the wurtzite form compared to the zinc blende one. In contrast, our results based on the lattice parameter tuning in a ZnxCd1−xS alloy nanocrystal system achieves 7.5% Mn2+ doping in a wurtzite nanocrystal, such a concentration being substantially higher compared to earlier reports even for nanocrystal hosts with the “favorable” zinc-blende structure. These results prove a consequence of local strains due to a size mismatch between the dopant and the host that can be avoided by optimizing the composition of the alloyed host. Additionally, the present approach opens up a new route to dope such nanocrystals to a macroscopic extent as required for many applications. Photophysical studies show that the quantum efficiency per Mn2+ ion decreases exponentially with the average number of Mn2+ ions per nanocrystal; en route, a high quantum efficiency of 25% is achieved for a range of compositions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three new aluminoborates having the composition MAl3BO7, where M = Ca,Sr or Ba, have been prepared. X-ray diffraction data indicate that all the phases are monoclinic, with close structural similarity to the meta stable aluminate, SrAl4O7. These aluminoborates are good host lattices for Eu2+ luminescence. The emission spectra show multiple bands in the blue region, corresponding to two inequivalent sites in each case, with one of them having quantum efficiency greater-than or equivalent to 75%. In the case of SrAl3BO7:Eu2+, the d–f band emission dominates at 300 K whereas at 77 K both d–f band and f–f line emissions are observed. Efficient Eu2+→Mn2+ energy transfer is observed in MAl3BO7 leading to strong green emission of Mn2+in the tetrahedral sites.aluminoborates; europium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The brush plating technique has been employed for the first time to obtain CdSe films on Ti and conducting glass substrates. These films have been annealed in an argon atmosphere and their structural, optical and photoelectrochemical properties are discussed. The power conversion efficiency has been found to be 7.43% under an illumination of 80 mW cm-2. A peak quantum efficiency of 0.64 is obtained for an incident wavelength of 720 nm. Donor concentration of 3.42 x 10(17) cm-3, electron mobility of 3 cm2 V-1 s-1 and minority carrier diffusion length of 0.013 mum have been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electronic properties of graphene have been studied more extensively than its photonic applications, in spite of its exciting optical properties. Recent results on solar cells, light emitting diodes and photodetectors show its true potential in photonics and optoelectronics. Here, we have explored the use of reduced graphene oxide as a candidate for solution processed ultraviolet photodetectors. UV detection is demonstrated by reduced graphene oxide in terms of time resolved photocurrent as well as photoresponse. The responsivity of the detectors is found to be 0.12 A/W with an external quantum efficiency of 40%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3640222]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UV photodetectors based on ZnO nanorods prepared by two methods have been fabricated by a simple drop casting procedure. The detectors show good performance at 375 nm giving satisfactory values of responsivity, external quantum efficiency and photoconductive gain. The performance of ZnO nanorods prepared at low temperatures, containing a larger concentration of defects, is found to be superior. (C) 2011 The Japan Society of Applied Physics