947 resultados para Prothrombin Activator
Resumo:
AIMS: The objective of the present investigation was to examine the relationship of three polymorphisms, Thr394Thr, Gly482Ser and +A2962G, of the peroxisome proliferator activated receptor-gamma co-activator-1 alpha (PGC-1alpha) gene with Type 2 diabetes in Asian Indians. METHODS: The study group comprised 515 Type 2 diabetic and 882 normal glucose tolerant subjects chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The three polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype frequencies were estimated using an expectation-maximization (EM) algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms studied were not in linkage disequilibrium. With respect to the Thr394Thr polymorphism, 20% of the Type 2 diabetic patients (103/515) had the GA genotype compared with 12% of the normal glucose tolerance (NGT) subjects (108/882) (P = 0.0004). The frequency of the A allele was also higher in Type 2 diabetic subjects (0.11) compared with NGT subjects (0.07) (P = 0.002). Regression analysis revealed the odds ratio for Type 2 diabetes for the susceptible genotype (XA) to be 1.683 (95% confidence intervals: 1.264-2.241, P = 0.0004). Age adjusted glycated haemoglobin (P = 0.003), serum cholesterol (P = 0.001) and low-density lipoprotein (LDL) cholesterol (P = 0.001) levels and systolic blood pressure (P = 0.001) were higher in the NGT subjects with the XA genotype compared with GG genotype. There were no differences in genotype or allelic distribution between the Type 2 diabetic and NGT subjects with respect to the Gly482Ser and +A2962G polymorphisms. CONCLUSIONS: The A allele of Thr394Thr (G --> A) polymorphism of the PGC-1 gene is associated with Type 2 diabetes in Asian Indian subjects and the XA genotype confers 1.6 times higher risk for Type 2 diabetes compared with the GG genotype in this population.
Resumo:
Objective: We evaluated the effects of soy isoflavone supplementation on hemostasis in healthy postmenopausal women. Methods: In this double-blinded, placebo-controlled study, 47 postmenopausal women 47-66 y of age received 40 mg of soy isoflavone (n = 25) or 40 mg of casein placebo (n = 22) once a day for 6 mo. Levels of factors VII and X. fibrinogen, thrombin-antithrombin complex, prothrombin fragments I plus 2, antithrombin, protein C, total and free protein S, plasminogen, plasminogen activator inhibitor-1, and D-dimers were measured at baseline and 6 mo. Urinary isoflavone concentrations (genistein and daidzein) were measured as a marker of compliance and absorption using high-performance liquid chromatography. Baseline characteristics were compared by unpaired Student`s t test. Within-group changes and comparison between the isoflavone and casein placebo groups were determined by a mixed effects model. Results: The levels of hemostatic variables did not change significantly throughout the study in the isoflavone group; however, the isoflavone group showed a statistically significant reduction in plasma concentration of prothrombin fragments I plus 2; both groups showed a statistically significant reduction in antithrombin, protein C, and free protein S levels. A significant increase in D-dimers was observed only in the isoflavone group. Plasminogen activator inhibitor-l levels increased significantly in the placebo group. However, these changes were not statistically different between groups. Conclusion: The results of the present study do not support a biologically significant estrogenic effect of soy isoflavone on coagulation and fibrinolysis in postmenopausal women. However, further research will be necessary to definitively assess the safety and efficacy of isoflavone. (D 2008 Elsevier Inc. All rights reserved.
Resumo:
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAD genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1 Delta) of this gene. The gat 1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gal is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.
Resumo:
Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.
Resumo:
Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which hinds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4 Angstrom resolution to a crystallographic residual of 18.6% (R-free =26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and Structural differences are observed in both the domains in the putative Ca2+ and carbohydrate binding regions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 angstrom resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl1- instead of SO42-.
Resumo:
The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 angstrom resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b = 63.3 and c = 48.2 angstrom, alpha = gamma = 90.0 degrees and beta = 90.8 degrees. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fibrinolysis is a basic defense mechanism of the organism designed to control the deposition of fibrin in the vascular system and elsewhere. Fibrinolytic activity was measured by the fibrin plate method for three groups of rats (N = 6) that were maintained at room temperature, 20-25 degrees C, 3 degrees C or 38 degrees C for 4 h before testing. Based on measurement of fibrinolytic activity, the level of plasminogen activator released from isolated aortic segments of rats maintained at room temperature (24-28 degrees C) differed significantly from that of the 38 degrees C group. The animals maintained at 3 degrees C did not release plasminogen activator, suggesting that the fibrinolytic response was impaired at low temperature.