990 resultados para Protein phosphatase 2A


Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’activité catalytique du cytochrome P450 dépend de la disponibilité d’électrons produits par la NADPH P450 réductase (NPR). Notre étude a pour but de déterminer comment l’expression de la NPR est modulée chez le lapin. Afin de comprendre comment l’expression de la NPR est modulée, des hépatocytes de lapins témoins ont été incubés pendant 2, 4, 24 et 48 heures en présence de plusieurs activateurs de facteurs de transcription connus du cytochrome P450. De plus, des lapins ayant reçu une injection sous-cutanée de térébenthine afin de produire une réaction inflammatoire aseptique sont sacrifiés 48 heures plus tard dans le but d’étudier les effets de l’inflammation sur l’expression de la NPR. La rosiglitazone, le fénofibrate, l’acétate de plomb et le chlorure de cobalt (des inducteurs des PPAR, PPAR, AP-1 et HIF-1), après 48 heures d’incubation, n’ont provoqué aucun changement d’expression ou d’activité de la NPR. Après 48 heures d’incubation, la dexaméthasone (Dexa) a augmenté la quantité d’ARNm (QT-PCR), l’expression et l’activité de la NPR (p<0,05), en plus d’augmenter l’ARNm des récepteurs nucléaires CAR (récepteur constitutif à l’androstane) et PXR (récepteur X prégnane) (p<0.05). Le phénobarbital (PB) a augmenté seulement l’activité de la NPR (p<0.05). Par contre, après 48 heures d’incubation, la combinaison PB et Dexa a augmenté la quantité d’ARNm, ainsi que l’expression et l’activité de la NPR (p<0.05). La combinaison de PB et Dexa a induit une augmentation d’ARNm des récepteurs nucléaires CAR, PXR et RXR (récepteur X du rétinoïde) plus précocement, soit après 2 heures d’incubation (p<0.05). Le PD098059 (PD), un bloqueur de l’activation de MAPK1 (mitogen-activated protein kinase), et l’acide okadaïque (OA), un inhibiteur de la protéine phosphatase 2A (PP2A), ont bloqué l'augmentation d'expression et d'activité de la NPR induite par le PB après 48 heures d’incubation. La réaction inflammatoire aseptique a diminué l’expression et l’activité de la NPR après 48 heures d’incubation (p<0.05). On conclue que la dexaméthasone et le phénobarbital sont des inducteurs potentiels de la NPR et que les voies de signalisation de CAR, PXR et RXR semblent être impliquées dans le contrôle de cette induction. Des études supplémentaires devront être complétées afin de confirmer ces résultats préliminaires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stimulation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (PKB) is implicated in the regulation of protein synthesis in various cells. One mechanism involves PI3K/PKB-dependent phosphorylation of 4E-BP1, which dissociates from eIF4E, allowing initiation of translation from the 7-methylGTP cap of mRNAs. We examined the effects of insulin and H(2)O(2) on this pathway in neonatal cardiac myocytes. Cardiac myocyte protein synthesis was increased by insulin, but was inhibited by H(2)O(2). PI3K inhibitors attenuated basal levels of protein synthesis and inhibited the insulin-induced increase in protein synthesis. Insulin or H(2)O(2) increased the phosphorylation (activation) of PKB through PI3K, but, whereas insulin induced a sustained response, the response to H(2)O(2) was transient. 4E-BP1 was phosphorylated in unstimulated cells, and 4E-BP1 phosphorylation was increased by insulin. H(2)O(2) stimulated dephosphorylation of 4E-BP1 by increasing protein phosphatase (PP1/PP2A) activity. This increased the association of 4E-BP1 with eIF4E, consistent with H(2)O(2) inhibition of protein synthesis. The effects of H(2)O(2) were sufficient to override the stimulation of protein synthesis and 4E-BP1 phosphorylation induced by insulin. These results indicate that PI3K and PKB are important regulators of protein synthesis in cardiac myocytes, but other factors, including phosphatase activity, modulate the overall response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC), which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied secondary metabolites composition, such as sesquiterpenes, diterpenes, triterpenes, all of which showed potent antiviral, cytotoxic, and antitumoral activities, including protein phosphatase type 2A (PP2A) inhibitory effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the involvement of protein kinases in the signaling cascade that leads to hypersensitive cell death, we used a previously established system in which a fungal elicitor, xylanase from Trichoderma viride (TvX), induces a hypersensitive reaction in tobacco (Nicotiana tabacum) cells in culture (line XD6S). The elicitor induced the slow and prolonged activation of a p47 protein kinase, which has the characteristics of a family member of the mitogen-activated protein kinases. An inhibitor of protein kinases, staurosporine, and a blocker of Ca channels, Gd3+ ions, both of which blocked the TvX-induced hypersensitive cell death, inhibited the TvX-induced activation of p47 protein kinase. Moreover, an inhibitor of serine/threonine protein phosphatase alone induced both rapid cell death and the persistent activation of the p47 protein kinase. Thus, the p47 protein kinase might be a component of the signal transduction pathway that leads to hypersensitive cell death, and the regulation of the duration of activation of the p47 protein kinase might be important in determining the destiny of tobacco cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2–Mob1, and Dbf2(S374A/T544A)–Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bovine pyruvate dehydrogenase phosphatase (PDP) is a Mg2+-dependent and Ca2+-stimulated heterodimer that is a member of the protein phosphatase 2C family and is localized to mitochondria. Insight into the function of the regulatory subunit of PDP (PDPr) has been gained. It decreases the sensitivity of the catalytic subunit of PDP (PDPc) to Mg2+. The apparent Km of PDPc for Mg2+ is increased about 5-fold, from about 0.35 mM to 1.6 mM. The polyamine spermine increases the sensitivity of PDP but not PDPc to Mg2+, apparently by interacting with PDPr. PDPc but not PDP can use the phosphopeptide RRAT(P)VA as a substrate. These observations are interpreted to indicate that PDPr blocks or distorts the active site of PDPc and that spermine produces a conformational change in PDPr that reverses its inhibitory effect. These findings suggest that PDPr may be involved in the insulin-induced activation of the mitochondrial PDP in adipose tissue, which is characterized by a decrease in its apparent Km for Mg2+.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using SDS/polyacrylamide gels that contained myelin basic protein, we identified a 46-kDa protein kinase in tobacco that is transiently activated by cutting. Although the activity of the kinase was rarely detectable in mature leaves, marked activity became apparent within several minutes after isolation of leaf discs and subsided within 30 min. In the presence of cycloheximide (CHX), the kinase activity did not diminish after the isolation over the course of 2 hr, suggesting that protein synthesis was not required for the activation of the kinase. A second cutting of leaf discs between 30 min and 60 min after the isolation failed to activate the kinase, whereas a second cutting given 3 hr after isolation apparently activated the kinase. These results suggest that the 46-kDa protein kinase is desensitized immediately after the first activation, which can be blocked by CHX, but the response ability recovers with time. When protein extracts containing the active kinase were treated with serine/threonine-specific or tyrosine-specific protein phosphatase, the kinase activity was abolished. After immunoprecipitation with antibody against phosphotyrosine, activity of the kinase was recovered in the immunoprecipitate. These results suggest that the active form of the kinase is phosphorylated at both serine/threonine and tyrosine residues. It seems likely that the 46-kDa protein kinase can be activated by dual phosphorylation. The activity of a 46-kDa protein kinase was also detected in leaves of a wide variety of plant species including dicotyledonous and monocotyledonous plants. We propose the name PMSAP (plant multisignal-activated protein) kinase for this kinase because the kinase was also activated by various signals other than cutting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a mu-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (k(cat)/K-m) at pH 4.5, whereas its catalytic rate constant (k(cat)) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pK(a) of the leaving group. The crystal structure of the phosphate-bound Fe(III)-Mn(II) PAP has been determined to 2.5-Angstrom resolution (final R-free value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to A protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis.