996 resultados para Protein aggregation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet adhesion, the initial step of platelet activation, is mediated by the interaction of von Willebrand factor (VWF) with its platelet receptor, the GPIb-IX complex. The binding of VWF to GPIb-IX is induced either by increased shear stress or by exogenous modulators, such as botrocetin. At a molecular level, this interaction takes place between the A1 domain of VWF and the GPIb alpha chain of the GPIb-IX complex. We report here the design and functional characteristics of a VWF template-assembled synthetic protein (TASP), a chimeric four-helix-bundle TASP scaffold mimicking the surface of the A1 domain. Twelve residues located on helices alpha 3 and alpha 4 in the native A1 domain were grafted onto a surface formed by two neighboring helices of the TASP. VWF TASP was found to inhibit specifically botrocetin-induced platelet aggregation and to bind both botrocetin and GPIb alpha. However, in contrast to the native A1 domain, VWF TASP did not bind simultaneously to both ligands. Modeling studies revealed that the relative orientation of the alpha helices in VWF TASP led to a clash of bound botrocetin and GPIb alpha. These results demonstrate that a chimeric four-helix-bundle TASP as a scaffold offers a suitable surface for presenting crucial residues of the VWF A1 domain; the potential of the TASP approach for de novo protein design and mimicry is thereby illustrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amyloid fibrils are typically rigid, unbrariched structures with diameters of similar to 10 nm and lengths up to several micrometres, and are associated with more than 20 diseases including Alzheimer's disease and type II diabetes. Insulin is a small, predominantly alpha-helical protein consisting of 51 residues in two disulfide-linked polypeptide chains that readily assembles into amyloid fibrils under conditions of low PH and elevated temperature. We demonstrate here that both the A-chain and the B-chain of insulin are capable of forming amyloid fibrils in isolation under similar conditions, with fibrillar morphologies that differ from those composed of intact insulin. Both the A-chain and B-chain fibrils were found to be able to cross-seed the fibrillization of the parent protein, although these reactions were substantially less efficient than self-seeding with fibrils composed of full-length insulin. In both cases, the cross-seeded fibrils were morphologically distinct from the seeding, material, but shared common characteristics with typical insulin fibrils, including a very similar helical repeat. The broader distribution of heights of the cross-seeded fibrils compared to typical insulin fibrils, however, indicates that their underling protofilament hierarchy may be subtly different. In addition, and remarkably in view of this seeding behavior, the soluble forms of the A-chain and B-chain peptides were found to be capable of inhibiting insulin fibril formation. Studies using mass spectrometry suggest that this behavior might be attributable to complex formation between insulin and the A-chain and B-chain peptides. The finding that the same chemical form of a polypeptide chain in different physical states can either stimulate or inhibit the conversion of a protein into amyloid fibrils sheds new light on the mechanisms underlying fibril formation, fibril strain propagation and amyloid disease initiation and progression. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mucetin (Trimeresurus mucrosquamatus venom activator, TMVA) is a potent platelet activator purified from Chinese habu (Trimeresurus mucrosquamatus) venom. It belongs to the snake venom heterodimeric C-type lectin family and exists in several multimeric forms. We now show that binding to platelet glycoprotein (GP) Ib is involved in mucetin-induced platelet aggregation. Antibodies against GPIb as well as the GPIb-blocking C-type lectin echicetin inhibited mucetin-induced platelet aggregation. Binding of GPIb was confirmed by affinity chromatography and Western blotting. Antibodies against GPVI inhibited convulxin- but not mucetin-induced aggregation. Signalling by mucetin involved rapid tyrosine phosphorylation of a number of proteins including Syk, Src, LAT and PLC gamma 2. Mucetin-induced phosphorylation of the Fc gamma chain of platelet was greatly promoted by inhibition of alpha(IIb)beta(3) by the peptidomimetic EMD 132338, suggesting that phosphatases downstream of alpha(IIb)beta(3) activation are involved in dephosphorylation of Fc gamma. Unlike other multimeric snake C-type lectins that act via GPIb and only agglutinate platelets, mucetin activates alpha(IIb)beta(3). Inhibition of alpha(IIb)beta(3) strongly reduced the aggregation response to mucetin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in mucetin-induced platelet aggregation. Apyrase and aspirin also inhibit platelet aggregation induced by mucetin, suggesting that ADP and thromboxane A2 are involved in autocrine feedback. Sequence and structural comparison with closely related members of this protein family point to features that may be responsible for the functional differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We purified from Dictyostelium lysates an 88-kDa protein that bound to a subset of small GTPases, including racE, racC, cdc42Hs, and TC4ran, but did not bind to R-ras or rabB. Cloning of the gene encoding this 88-kDa protein revealed that it contained multiple armadillo-like repeats most closely related to the mammalian GTP exchange factor smgGDS. We named this protein darlin (Dictyostelium armadillo-like protein). Disruption of the gene encoding darlin demonstrated that this protein is not essential for cytokinesis, pinocytosis, phagocytosis, or development. However, the ability of darlin null cells to aggregate in response to starvation is severely affected. When starved under liquid medium, the mutant cells were unable to form aggregation centers and streams, possibly because of a defect in cAMP relay signaling. This defect was not due to an inability of the darlin mutants to activate adenylate cyclase in response to G protein stimulation. These results suggest that the darlin protein is involved in a signaling pathway that may modulate the chemotactic response during early development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NACP, a 140-amino acid presynaptic protein, is the precursor of NAC [the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease (AD) amyloid], a peptide isolated from and immunologically localized to brain amyloid of patients afflicted with AD. NACP produced in Escherichia coli bound to A beta peptides, the major component of AD amyloid. NACP bound to A beta 1-38 and A beta 25-35 immobilized on nitrocellulose but did not bind to A beta 1-28 on the filter under the same conditions. NACP binding to A beta 1-38 was abolished by addition of A beta 25-35 but not by A beta 1-28, suggesting that the hydrophobic region of the A beta peptide is critical to this binding. NACP-112, a shorter splice variant of NACP containing the NAC sequence, bound to A beta, but NACP delta, a deletion mutant of NACP lacking the NAC domain, did not bind A beta 1-38. Furthermore, binding between NACP-112 and A beta 1-38 was decreased by addition of peptide Y, a peptide that covers the last 15 residues of NAC. In an aqueous solution, A beta 1-38 aggregation was observed when NACP was also present in an incubation mixture at a ratio of 1:125 (NACP/A beta), whereas A beta 1-38 alone or NACP alone did not aggregate under the same conditions, suggesting that the formation of a complex between A beta and NACP may promote aggregation of A beta. Thus, NACP can bind A beta peptides through the specific sequence and can promote A beta aggregation, raising the possibility that NACP may play a role in the development of AD amyloid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The protein kinase YakA is responsible for the growth arrest and induction of developmental processes that occur upon starvation of Dictyostelium cells. yakA-cells are aggregation deficient, have a faster cell cycle and are hypersensitive to oxidative and nitrosoative stress. With the aim of isolating members of the YakA pathway, suppressors of the death induced by nitrosoative stress in the yakA-cells were identified. One of the suppressor mutations occurred in keaA, a gene identical to DG1106 and similar to Keap1 from mice and the Kelch protein from Drosophila, among others that contain Kelch domains. Results: A mutation in keaA suppresses the hypersensitivity to oxidative and nitrosoative stresses but not the faster growth phenotype of yakA-cells. The growth profile of keaA deficient cells indicates that this gene is necessary for growth. keaA deficient cells are more resistant to nitrosoative and oxidative stress and keaA is necessary for the production and detection of cAMP. A morphological analysis of keaA deficient cells during multicellular development indicated that, although the mutant is not absolutely deficient in aggregation, cells do not efficiently participate in the process. Gene expression analysis using cDNA microarrays of wild-type and keaA deficient cells indicated a role for KeaA in the regulation of the cell cycle and pre-starvation responses. Conclusions: KeaA is required for cAMP signaling following stress. Our studies indicate a role for kelch proteins in the signaling that regulates the cell cycle and development in response to changes in the environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabdotids elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the beta A4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell signaling cascades that mediate pigment movements in crustacean chromatophores are not yet well established, although Ca(2+) and cyclic nucleotide second messengers are involved. Here, we examine the participation of cyclic guanosine monophosphate (cGMP) in pigment aggregation triggered by red pigment concentrating hormone (RPCH) in the red ovarian chromatophores of freshwater shrimp. In Ca(2+)-containing (5.5 mmol l(-1)) saline, 10 mu mol l(-1) dibutyryl cGMP alone produced complete pigment aggregation with the same time course (approximate to 20 min) and peak velocity (approximate to 17 mu m/min) as 10(-8) mol l(-1) RPCH; however, in Ca(2+)-free saline (9 X 10(-11) mol l(-1) Ca(2+)), db-cGMP was without effect. The soluble guanylyl cyclase (GC-S) activators sodium nitroprusside (SNP, 0.5 mu mol l(-1)) and 3-morpholinosydnonimine (SIN-1, 100 mu mol l(-1)) induced moderate aggregation by themselves (approximate to 35%-40%) but did not affect RPCH-triggered aggregation. The GC-S inhibitors zinc protoporphyrin IX (ZnPP-XI, 30 mu mol l(-1)) and 6-anilino-5,8-quinolinedione (LY83583, 10 mu mol l(-1)) partially inhibited RPCH-triggered aggregation by approximate to 35%. Escherichia coli heat-stable enterotoxin (STa, 1 mu mol l(-1)), a membrane-receptor guanylyl cyclase stimulator, did not induce or affect RPCH-triggered aggregation. We propose that the binding of RPCH to an unknown membrane-receptor type activates a Ca(2+)-dependent signaling cascade coupled via cytosolic guanylyl cyclase and cGMP to protein kinase G-phosphorylated proteins that regulate aggregation-associated, cytoskeletal molecular motor activity. This is a further example of a cGMP signaling cascade mediating the effect of a crustacean X-organ neurosecretory peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recovered, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient merle. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half that of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wildtype and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mm BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wildtype hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein-Barr virus latent membrane protein (LMP 1) functions as a constitutively active signalling molecule and associates in lipid rafts clustered with other signalling molecules. Using immunofluorescent confocal microscopy, LMP 1 was shown to have an heterogeneous distribution among individual cells which was not related to the cell cycle stage. LMP 1 was shown to localize to intracellular compartments in cells other than the plasma membrane, Co-labelling of cells with both an LIMP 1 antibody and an antibody to the Golgi protein GS15 revealed that the intracellular LMP 1 partly co-localized with the Golgi apparatus. Further confirmation of intracellular LMP 1 localization was obtained by immunoelectron microscopy with rabbit polyclonal LIMP 1 antibodies and cryosectioning. As well as being present in intracellular foci, LMP 1 co-localized in part with MHC-II and was present on exosomes derived from a lymphoblastoid cell line. Preparations of LMP 1 containing exosomes were shown to inhibit the proliferation of peripheral blood mononuclear cells, suggesting that LIMP 1 could be involved in immune regulation. This may be of particular relevance in EBV-associated tumours such as nasopharyngeal carcinoma and Hodgkin's disease, as LMP 1-containing exosomes may be taken up by infiltrating T-lymphocytes, where LMP 1 could exert an anti-proliferative effect, allowing the tumour cells to evade the immune system.