940 resultados para Protein Interaction Domains and Motifs
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.
Resumo:
The classical concept of estrogen receptor (ER) activation is that steroid passes the cell membrane, binds to its specific protein receptor in the cell's cytoplasm and the steroid-receptor complex travels to the nucleus where it activates responsive genes. This basic idea has been challenged by results of experiments demonstrating insulin-like growth factor 1 (IGF-1) activation of the ER in the complete absence of estrogen suggesting at least one other mechanism of ER activation not involving steroid. One explanation is that activation of the cell surface IGF-1 receptor leads to synthesis of an intracellular protein(s) able to bind to and stimulate the ER. Based on results using the two-hybrid system, coimmunoprecipitation and transfection-luciferase assays, we herein show that one of these proteins could well be receptor for activated C kinase 1 (RACK-1). Using the human ER type α (ER-α) as bait, a cloned complementary deoxyribonucleic acid (cDNA) library from IGF-1 treated human breast cancer MCF-7 cells was screened for ER-α - protein interactions. Many positive clones were obtained which contained the RACK-1 cDNA sequence. Coimmunoprecipitation of in-vitro translation products of the ER-α and RACK-1 confirmed the interaction between the two proteins. Transfection studies using the estrogen response element spliced to a luciferase reporter gene revealed that constitutive RACK-1 expression was able to powerfully stimulate ER-α activity under estrogen-free conditions. This effect could be enhanced by 17β-estradiol (E2) and blocked by tamoxifen, an E2 antagonist. These results show that RACK-1 is able to activate the ER-α in the absence of E2, although together with the latter, enhanced effects occur. Since RACK-1 gene expression is stimulated by IGF-1, it is distinctly possible that RACK-1 is the mediator of the stimulatory effects of IGF-1 on ER-α. © 2014 JMS.
Resumo:
The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.
Resumo:
This study was aimed to evaluate the penetration behaviour of different brines with tumbled beef steaks from the biceps femoris muscle, specifically their interactions with pH and effects on yield. Six muscles from different animals, divided into origin (OP) and insertion (IP) portions, were cut into 60 steaks of 2.5 cm thickness and tumbled for 30 or 60 min. The steaks were tumbled with two brines, with (WTB/HSP) or without (WTB) hydrolysed soy protein (HSP), and steaks that were not tumbled with brine or water were used as controls. Brine penetration was verified by measuring the amount of dye-containing brine (absorbance at 627 nm) recovered from homogenates of four thin (2 mm) slices from the surface of the beef steaks after tumbling. The WTB/HSP steaks exhibited greater (P < 0.05) brine penetration when tumbled for 60 min than for 30 min. The OP steaks showed greater yield and lower pH (P < 0.05) than IP steaks. HSP-added brine increased the water absorption and retention in the first slices of the steaks, and its efficiency was increased with a longer tumbling time. The portion of the biceps femoris muscle used influenced brine absorption and retention, impacting meat yield. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The role of Ca2+ in the regulation of the cell cycle has been investigated mostly in studies assessing global cytosolic free Ca2+. Recent studies, however, have used unique techniques to assess Ca2+ in subcellular organelles, such as mitochondria, and in discrete regions of the cytoplasm. These studies have used advanced fluorescence digital imaging techniques and Ca2+-sensitive fluorescence probes, and/or targeting of Ca2+-sensitive proteins to intracellular organelles. The present review describes the results of some of these studies and the techniques used. The novel techniques used to measure Ca2+ in microdomains and intracellular organelles are likely to be of great use in future investigations assessing Ca2+ homeostasis during the cell cycle.
Resumo:
Adjuvant cisplatin-based chemoradiation improves survival in HNSCC patients presenting with risk features. ERCC1 (excision repair cross-complementation group 1) is associated with resistance to chemo- and radiation therapy and may have a prognostic value in HNSCC patients. Here we studied ERCC1 expression and the polymorphism T19007C as prognostic markers in these patients. This is a retrospective and translational analysis, where ERCC1 protein expression was evaluated by immunohistochemistry, using an H-score, and mRNA expression was determined by RT-PCR. T 19007C genotypes were detected by PCR-RFLP carried out using DNA template extracted from normal lymph nodes. A high H-score was seen in 32 patients (54%), who presented better 5-year overall survival (5-y OS: 50% vs. 18%, HR 0.43, p=0.026). Fifteen out of 45 patients (33%), with high mRNA expression, presented better 5-year overall survival (OS) (86% vs. 30%, HR 0.26, p=0.052). No OS difference was detected among T 19007C genotypes. High H-score and mRNA expression remained significant as favorable prognostic factors in a multivariate analysis. Collectively, our results suggest that high ERCC1 expression seems to be associated with better OS rates in HNSCC patients submitted to adjuvant cisplatin-based chemoradiation.
Resumo:
To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (
Resumo:
The PrP(C) is expressed in several cell types but its physiological function is unknown. Some studies associate the PrP(C) with copper metabolism and the antioxidant activity of SOD. Our hypothesis was that changes in PrP(C) expression lead to abnormal copper regulation and induce SOD downregulation in the vascular wall. Objectives: to study whether the PrP(C) expression undergoes induction by agents that trigger endoplasmic reticulum stress (ERS) and, in this context, to evaluate the SOD activity. Methods: To trigger ERS, in vitro, rabbit aortic smooth muscle cells were challenged for 4, 8 and 18 hours, with angiotensin-II, tunicamycin and 7-ketocholesterol. For in vivo studies rabbit aortic arteries were subjected to injury by balloon catheter. Results: In vitro baseline SOD activity, determined through inhibition of cytochrome-c reduction, was 13.9 +/- 1.2 U/mg protein, angiotensin-II exposed for 8 hours produced an increase in SOD activity, and cellular copper concentration was about 9 times greater only under these conditions. Western blotting analysis for SOD isoenzymes showed an expression profile that was not correlated with the enzymatic activity. PrP(C) expression decreased after exposure to all agents after different incubation periods. RT-PCR assay showed increased mRNA expression for PrP(C) only in cells stimulated for 8 hours with the different stressors. The PrP(C) mRNA expression in rabbit aortic artery fragments, subjected to balloon catheter injury, showed a pronounced increase immediately after overdistension. The results obtained indicated a PrP(C) protection factor during the early part of the ERS exposure period, but did not demonstrate a SOD-like profile for the PrP(C). (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.
Resumo:
Syntaxin 7 is a mammalian target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane transport between late endosomes and lysosomes. The aim of the present study was to use immunoaffinity techniques to identify proteins that interact with Syntaxin 7. We reasoned that this would be facilitated by the use of cells producing high levels of Syntaxin 7, Screening of a large number of tissues and cell lines revealed that Syntaxin 7 is expressed at very high levels in B16 melanoma cells. Moreover, the expression of Syntaxin 7 increased in these cells as they underwent melanogenesis. From a large scale Syntaxin 7 immunoprecipitation, we have identified six polypeptides using a combination of electrospray mass spectrometry and immunoblotting. These polypeptides corresponded to Syntaxin 7, Syntaxin 6, mouse Vps10p tail interactor 1b (mVti1b), alpha -synaptosome-associated protein (SNAP), vesicle-associated membrane protein (VAMP)8, VAMP7, and the protein phosphatase 1M regulatory subunit. We also observed partial colocalization between Syntaxin 6 and Syntaxin 7, between Syntaxin 6 and mVti1b, but not between Syntaxin 6 and the early endosomal t-SNARE Syntaxin 13. Based on these and data reported previously, we propose that Syntaxin 7/mVti1b/Syntaxin 6 may form discrete SNARE complexes with either VAMP7 or VAMPS to regulate fusion events within the late endosomal pathway and that these events may play a critical role in melanogenesis.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa