223 resultados para Prostaglandins F


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandins (PG's), produced from arachidonic acid metabolism, are potent mediators of inflammation. Nonsteroidal anti-inflammatory (NSAIDs) exert their effects by inhibition of prostaglandin endoperoxide synthase (PGHS) enzyme, which catalyses the first committed step in arachidonic acid metabolism. Two isoforms of PGHS are known: PGHS-1, constitutively expressed in most tissues, and is responsible for physiological production of PG's. The second isoform, PGHS-2, is induced by cytokines, mitogens and endotoxins in inflammatory cells, and appears to be responsible for the elevated production of PG's during inflammation. With the recent discovery of the inducible PGHS (PGHS-2), the medicinal chemist now possesses a novel target for designing therapeutic agents that could provide suitable anti-inflammatory activity without the ulcerogenic and renal side effects associated with currently available NSAIDs, all of which inhibit both PGHS-1 and PGHS-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe the results of a research effort developed in Laboratório de Avaliação e Síntese de Substancias Bioativas (LASSBio, UFRJ) in the utilization of Brazilian abundant natural product, safrole (1), the principal chemical constituent of Sassafras oil (Ocotea pretiosa), as an attractive synthon to access different chemical class of bioactive compounds, as prostaglandins analogues, non-steroidal antiinflammatory agents and antithrombotic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Niacin (nicotinamide, nicotinic acid) interferes on homeostasis, DNA regulation, signaling and longevity. Nicotinic acid reduces synthesis of lipoproteins-apo-B and increases HDL. Its antilipemic action in liver produces: 1) inhibition of DGAT2, with decreased triacylglycerol synthesis, 2) downregulation of the b-chain of adenosine triphosphate synthase, leading to reduced HDL-apo-A-I catabolism. Nicotinic acid could increase redox potential in vascular endothelium. HM74A receptor activation in macrophages would be responsible for the release of prostaglandins, causing flushing in epidermis. HM74A agonists could assist in identifying antilipemic agents. Extended release niacin in combination with statin appears to protect cardiovascular system of patients with low HDL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One hypothesis for the increased incidence of atopic diseases has been that it is associated with changing dietary habits, especially the changed intake of essential fatty acids (EFAs). The metabolism of EFAs produces eiconasoids, prostaglandins and leukotrienes, which are essential to organs and play a major role in regulation of inflammation and immune response. In some studies persons with atopic dermatitis have been found to have reduced levels of EFAs. The first year of infancy as well as the foetal period are crucial for the development of atopic immune response. The composition of blackcurrant seed oil (BCSO) corresponds to the recommended ratio of EFAs n-3 and n-6 in the diet (1/3-1/4) and as a dietary supplement could, even in small doses, modify the unbalance of EFAs in an efficient way. The purpose of this study was to find out whether atopic allergies can be prevented by supplementing the diet of pregnant mothers with blackcurrant seed oil and whether it could affect the immunological balance of a child. We also sought to find out whether a blackcurrant seed oil supplementation can affect the composition of breast milk to suppress the T helper 2 lymphocyte (Th2) responses in infants. 313 pregnant mothers were randomly assigned to receive BCSO (n=151) or olive oil as placebo (n=162). Supplementation was started at the 8th to 16th weeks of pregnancy, 6 capsules per day (dose of 3 g), and continued until the cessation of breastfeeding. It was thereafter followed by direct supplementation to infants of 1 ml (1 g) of oil per day until the age of two years. Atopic dermatitis and its severity (SCORAD index) were evaluated, serum total IgE was measured and skin prick tests were performed at the age of 3, 12 and 24 months. Peripheral blood mononuclear cell (PBMC) samples were taken at the age of 3 and 12 months and breast milk samples were collected during the first 3 months of breastfeeding. Parental atopy was common (81.7%) in the studied infants, making them infants with increased atopy risk. There was a significantly lower prevalence of atopic dermatitis in the BCSO group (33%) than in the olive oil group (47%) at the age of 12 months. Also, SCORAD was lower in the BCSO group than in the olive oil group. Dietary intervention with BCSO had immunomodulatory effects on breast milk, inducing cytokine production from Th2 to Th1 immunodeviation. It decreased the level of IL-4 and elevated the level of IFN-γ. BCSO intervention did not affect cytokines in the children’s PBMC. However, children of smoking parents in the combined BCSO and olive oil group had significantly elevated levels of Th2 type cytokines IL-4, IL-5 and the proinflammator cytokine TNF. Dietary supplementation with BCSO is safe. It is well tolerated and transiently reduces the prevalence of atopic dermatitis at the age of 12 months. It can possibly become a potential tool in prevention of atopic symptoms when used at the early stages of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandins are natural fatty acid derivatives with diverse physiological effects, including immune function and the control of cell growth. While the action of prostaglandins in the induction of stress proteins in vertebrate cells is well documented, their functions in invertebrate cells have been poorly investigated. The purpose of the present study was to investigate the effect of prostaglandin A1 (PGA1; 0.25, 1.25 and 12.5 µg/ml) on protein synthesis during the growth of Aedes albopictus cells. We found that PGA1 stimulates the synthesis of several polypeptides with molecular masses of 87, 80, 70, 57, 29, 27 and 23 kDa in Aedes albopictus cells. When the proteins induced by PGA1 and those induced by heat treatment were compared by polyacrylamide gel electrophoresis, PGA1 was found to induce the stress proteins. The HSP70 family and the low-molecular weight polypeptides (29 and 27 kDa, respectively) were induced by PGA1 in the lag phase. We also observed that PGA1 is able to induce a 23-kDa polypeptide independently of the growth phase of the cell

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of prostaglandins (PGA1 and PGB2) on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 µg/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while drastically inhibiting the synthesis of glycoproteins E1 and E2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is an important component of the renin-angiotensin system and that the actions of the peptide may either contribute to or oppose those of Ang II. Ang-(1-7) can be converted directly from Ang I bypassing prerequisite formation of Ang II. Formation of Ang-(1-7) is under the control of at least three endopeptidases depending on the tissue compartment and include neprilysin, thimet oligopeptidase and prolyl oligopeptidase. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. These enzymatic pathways may contribute to a complex relationship between the hypertensive actions of Ang II and various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor, central pressor, or thirst-stimulating actions associated with Ang II. In fact, new findings reveal depressor, vasodilator, and antihypertensive actions that may be more apparent in hypertensive animals or humans. Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result of increasing prostaglandins or nitric oxide. In this review, we examine the mechanisms by which Ang-(1-7) may contribute to cardiovascular regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that angiotensin-(1-7) (Ang-(1-7)) infusion potentiates the bradykinin (BK)-induced hypotensive response in conscious rats. The present study was conducted to identify Ang-(1-7)-BK interactions in the isolated rat heart perfused according to the Langendorff technique. Hearts were excised and perfused through the aortic stump under a constant flow with Krebs-Ringer solution and the changes in perfusion pressure and heart contractile force were recorded. Bolus injections of BK (2.5, 5, 10 and 20 ng) produced a dose-dependent hypotensive effect. Ang-(1-7) added to the perfusion solution (2 ng/ml) did not change the perfusion pressure or the contractile force but doubled the hypotensive effect of the lower doses of BK. The BK-potentiating Ang-(1-7) activity was blocked by pretreatment with indomethacin (5 mg/kg, ip) or L-NAME (30 mg/kg, ip). The Ang-(1-7) antagonist A-779 (50 ng/ml in Krebs-Ringer) completely blocked the effect of Ang-(1-7) on BK-induced vasodilation. These data suggest that the potentiation of the BK-induced vasodilation by Ang-(1-7) can be attributed to the release of nitric oxide and vasodilator prostaglandins through an Ang-(1-7) receptor-mediated mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2) was significantly increased in cannulated (Cn) rats, compared with naive (Nv) or sham-operated (Sh) rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%). The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs) of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the present research was to elucidate the roles and mechanisms by which the sensory nervous system, through the actions of potent vasodilator neuropeptides, regulates cardiovascular function in both the normal state and in the pathophysiology of hypertension. The animal models of acquired hypertension studied were deoxycorticosterone-salt (DOC-salt), subtotal nephrectomy-salt (SN-salt), and Nomega-nitro-L-arginine methyl ester (L-NAME)-induced hypertension during pregnancy in rats. The genetic model was the spontaneously hypertensive rat (SHR). Calcitonin gene-related peptide (CGRP) and substance P (SP) are potent vasodilating neuropeptides. In the acquired models of hypertension, CGRP and SP play compensatory roles to buffer the blood pressure (BP) increase. Their synthesis and release are increased in the DOC-salt model but not in the SN-salt model. This suggests that the mechanism by which both models lower BP in SN-salt rats is by increased vascular sensitivity. CGRP functions in a similar manner in the L-NAME model. In the SHR, synthesis of CGRP and SP is decreased. This could contribute to the BP elevation in this model. The CGRP gene knockout mouse has increased baseline mean arterial pressure. The long-term synthesis and release of CGRP is increased by nerve growth factor, bradykinin, and prostaglandins and is decreased by alpha2-adrenoreceptor agonists and glucocorticoids. In several animal models, sensory nervous system vasoactive peptides play a role in chronic BP elevation. In the acquired models, they play a compensatory role. In the genetic model, their decreased levels may contribute to the elevated BP. The roles of CGRP and SP in human hypertension are yet to be clarified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) on post-ischemic function in isolated hearts from adult male Wistar rats perfused according to the Langendorff technique. Local ischemia was induced by coronary ligation for 15 min. After ischemia, hearts were reperfused for 30 min. Addition of angiotensin II (Ang II) (0.20 nM, N = 10) or Ang-(1-7) (0.22 nM, N = 10) to the Krebs-Ringer perfusion solution (KRS) before the occlusion did not modify diastolic or systolic tension, heart rate or coronary flow (basal values for Ang-(1-7)-treated hearts: 0.72 ± 0.08 g, 10.50 ± 0.66 g, 216 ± 9 bpm, 5.78 ± 0.60 ml/min, respectively). During the period of occlusion, the coronary flow, heart rate and systolic tension decreased (values for Ang-(1-7)-treated hearts: 2.83 ± 0.24 ml/min, 186 ± 7 bpm, 6.95 ± 0.45 g, respectively). During reperfusion a further decrease in systolic tension was observed in control (4.95 ± 0.60 g) and Ang II-treated hearts (4.35 ± 0.62 g). However, in isolated hearts perfused with KRS containing Ang-(1-7) the further reduction of systolic tension during the reperfusion period was prevented (7.37 ± 0.68 g). The effect of Ang-(1-7) on the systolic tension was blocked by the selective Ang-(1-7) antagonist A-779 (2 nM, N = 9), by the bradykinin B2 antagonist HOE 140 (100 nM, N = 10), and by indomethacin pretreatment (5 mg/kg, ip, N = 8). Pretreatment with L-NAME (30 mg/kg, ip, N = 8) did not change the effect of Ang-(1-7) on systolic tension (6.85 ± 0.61 g). These results show that Ang-(1-7) at low concentration (0.22 nM) improves myocardial function (systolic tension) in ischemia/reperfusion through a receptor-mediated mechanism involving release of bradykinin and prostaglandins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 ± 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 ± 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.