94 resultados para Prolyl oligopeptidase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyclophilins and FK506 binding proteins (FKBPs) bind to cyclosporin A, FK506, and rapamycin and mediate their immunosuppressive and toxic effects, but the physiological functions of these proteins are largely unknown. Cyclophilins and FKBPs are ubiquitous and highly conserved enzymes that catalyze peptidyl-prolyl isomerization, a rate-limiting step during in vitro protein folding. We have addressed their functions by a genetic approach in the yeast Saccharomyces cerevisiae. Five cyclophilins and three FKBPs previously were identified in yeast. We identified four additional enzymes: Cpr6 and Cpr7, which are homologs of mammalian cyclophilin 40 that have also recently been independently isolated by others, Cpr8, a homolog of the secretory pathway cyclophilin Cpr4, and Fpr4, a homolog of the nucleolar FKBP, Fpr3. None of the eight cyclophilins or four FKBPs were essential. Surprisingly, yeast mutants lacking all 12 immunophilins were viable, and the phenotype of the dodecuplet mutant resulted from simple addition of the subtle phenotypes of each individual mutation. We conclude that cyclophilins and FKBPs do not play an essential general role in protein folding and find little evidence of functional overlap between the different enzymes. We propose that each cyclophilin and FKBP instead regulates a restricted number of unique partner proteins that remain to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trigger factor (TF) in Escherichia coli is a molecular chaperone with remarkable properties: it has prolyl-isomerase activity, associates with nascent polypeptides on ribosomes, binds to GroEL, enhances GroEL’s affinity for unfolded proteins, and promotes degradation of certain polypeptides. Because the latter effects appeared larger at 20°C, we studied the influence of temperature on TF expression. Unlike most chaperones (e.g., GroEL), which are heat-shock proteins (hsps), TF levels increased progressively as growth temperature decreased from 42°C to 16°C and even rose in cells stored at 4°C. Upon temperature downshift from 37°C to 10°C or exposure to chloramphenicol, TF synthesis was induced, like that of many cold-shock proteins. We therefore tested if TF expression might be important for viability at low temperatures. When stored at 4°C, E. coli lose viability at exponential rates. Cells with reduced TF content die faster, while cells overexpressing TF showed greater viability. Although TF overproduction protected against cold, it reduced viability at 50°C, while TF deficiency enhanced viability at this temperature. By contrast, overproduction of GroEL/ES, or hsps generally, while protective against high temperatures, reduced viability at 4°C, which may explain why expression of hsps is suppressed in the cold. Thus, TF represents an example of an E. coli protein which protects cells against low temperatures. Moreover, the differential induction of TF at low temperatures and hsps at high temperatures appears to provide selective protection against these opposite thermal extremes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophilin and FK506 binding protein (FKBP) accelerate cis–trans peptidyl-prolyl isomerization and bind to and mediate the effects of the immunosuppressants cyclosporin A and FK506. The normal cellular functions of these proteins, however, are unknown. We altered the active sites of FKBP12 and mitochondrial cyclophilin from the yeast Saccharomyces cerevisiae by introducing mutations previously reported to inactivate these enzymes. Surprisingly, most of these mutant enzymes were biologically active in vivo. In accord with previous reports, all of the mutant enzymes had little or no detectable prolyl isomerase activity in the standard peptide substrate-chymotrypsin coupled in vitro assay. However, in a variation of this assay in which the protease is omitted, the mutant enzymes exhibited substantial levels of prolyl isomerase activity (5–20% of wild-type), revealing that these mutations confer sensitivity to protease digestion and that the classic in vitro assay for prolyl isomerase activity may be misleading. In addition, the mutant enzymes exhibited near wild-type activity with two protein substrates, dihydrofolate reductase and ribonuclease T1, whose folding is accelerated by prolyl isomerases. Thus, a number of cyclophilin and FKBP12 “active-site” mutants previously identified are largely active but protease sensitive, in accord with our findings that these mutants display wild-type functions in vivo. One mitochondrial cyclophilin mutant (R73A), and also the wild-type human FKBP12 enzyme, catalyze protein folding in vitro but lack biological activity in vivo in yeast. Our findings provide evidence that both prolyl isomerase activity and other structural features are linked to FKBP and cyclophilin in vivo functions and suggest caution in the use of these active-site mutations to study FKBP and cyclophilin functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteinyl-tRNA (Cys-tRNA) is essential for protein synthesis. In most organisms the enzyme responsible for the formation of Cys-tRNA is cysteinyl-tRNA synthetase (CysRS). The only known exceptions are the euryarchaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum, which do not encode a CysRS. Deviating from the accepted concept of one aminoacyl-tRNA synthetase per amino acid, these organisms employ prolyl-tRNA synthetase as the enzyme that carries out Cys-tRNA formation. To date this dual-specificity prolyl-cysteinyl-tRNA synthetase (ProCysRS) is only known to exist in archaea. Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS). Its proS gene was cloned and the gene product overexpressed in Escherichia coli. By using G. lamblia, M. jannaschii, or E. coli tRNA as substrate, this ProRS was able to form Cys-tRNA and Pro-tRNA in vitro. Cys-AMP formation, but not Pro-AMP synthesis, was tRNA-dependent. The in vitro data were confirmed in vivo, as the cloned G. lamblia proS gene was able to complement a temperature-sensitive E. coli cysS strain. Inhibition studies of CysRS activity with proline analogs (thiaproline and 5′-O-[N-(l-prolyl)-sulfamoyl]adenosine) in a Giardia S-100 extract predicted that the organism also contains a canonical CysRS. This prediction was confirmed by cloning and analysis of the corresponding cysS gene. Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation. In contrast, the purified Saccharomyces cerevisiae and E. coli ProRS enzymes were unable to form Cys-tRNA under these conditions. Thus, the dual specificity is restricted to the archaeal genre of ProRS. G. lamblia's archaeal-type prolyl- and alanyl-tRNA synthetases refine our understanding of the evolution and interaction of archaeal and eukaryal translation systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD1 is an MHC class I-like antigen-presenting molecule consisting of a heavy chain and β2-microglobulin light chain. The in vitro refolding of synthetic MHC class I molecules has always required the presence of ligand. We report here the use of a folding method using an immobilized chaperone fragment, a protein disulphide isomerase, and a peptidyl-prolyl cis-trans isomerase (oxidative refolding chromatography) for the fast and efficient assembly of ligand-free and ligand-associated CD1a and CD1b, starting with material synthesized in Escherichia coli. The results suggest that “empty” MHC class I-like molecules can assemble and remain stable at physiological temperatures in the absence of ligand. The use of oxidative refolding chromatography thus is extended to encompass complex multisubunit proteins and specifically to members of the extensive, functionally diverse and important immunoglobulin supergene family of proteins, including those for which a ligand has yet to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (tRNA synthetases) of higher eukaryotes form a multiprotein complex. Sequence elements that are responsible for the protein assembly were searched by using a yeast two-hybrid system. Human cytoplasmic isoleucyl-tRNA synthetase is a component of the multi-tRNA synthetase complex and it contains a unique C-terminal appendix. This part of the protein was used as bait to identify an interacting protein from a HeLa cDNA library. The selected sequence represented the internal 317 amino acids of human bifunctional (glutamyl- and prolyl-) tRNA synthetase, which is also known to be a component of the complex. Both the C-terminal appendix of the isoleucyl-tRNA synthetase and the internal region of bifunctional tRNA synthetase comprise repeating sequence units, two repeats of about 90 amino acids, and three repeats of 57 amino acids, respectively. Each repeated motif of the two proteins was responsible for the interaction, but the stronger interaction was shown by the native structures containing multiple motifs. Interestingly, the N-terminal extension of human glycyl-tRNA synthetase containing a single motif homologous to those in the bifunctional tRNA synthetase also interacted with the C-terminal motif of the isoleucyl-tRNA synthetase although the enzyme is not a component of the complex. The data indicate that the multiplicity of the binding motif in the tRNA synthetases is necessary for enhancing the interaction strength and may be one of the determining factors for the tRNA synthetases to be involved in the formation of the multi-tRNA synthetase complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cyclophilin (CyP) purified to homogeneity from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 had a molecular mass of 20.5 kDa and a pI of 8.1. The protein catalyzed the isomerization of the prolyl peptide bond of N-succinyl-Ala-Ala-(cis,trans)-Pro-Phe p-nitroanilide with a kcat/Km value of 9.3 x 10(6) M-1.s-1 at 10 degrees C and pH 7.8. Cyclosporin A strongly inhibited this peptidylprolyl cis-trans isomerase activity with an IC50 of 19.6 nM. The sequence of the first 30 N-terminal amino acids of this CyP had high homology with the N-terminal sequences of other eukaryotic CyPs. By use of a DNA hybridization probe amplified by PCR with degenerate oligonucleotide primers designed based on the amino acid sequences of the N terminus of this CyP and highly conserved internal regions of other CyPs, a full-length cDNA clone was isolated. It possessed an open reading frame encoding a polypeptide of 203 amino acids with a calculated molecular weight of 21,969, containing a putative hydrophobic signal peptide sequence of 22 amino acids preceding the N terminus of the mature enzyme and a C-terminal sequence, Lys-Ala-Glu-Leu, characteristic of an endoplasmic reticulum retention signal. The Orpinomyces PC-2 CyP is a typical type B CyP. The amino acid sequence of the Orpinomyces CyP exhibits striking degrees of identity with the corresponding human (70%), bovine (69%), mouse (68%), chicken (66%), maize (61%), and yeast (54%) proteins. Phylogenetic analysis based on the CyP sequences indicated that the evolutionary origin of the Orpinomyces CyP was closely related with CyPs of animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ataxia-telangiectasia mutated (ATM), the protein defective in ataxia-telangiectasia, plays a central role in DNA damage response and signaling to cell cycle checkpoints. We describe here a cell line from a patient with an ataxia-telangiectasia-like clinical phenotype defective in the p53 response to radiation but with normal ATM activation and efficient downstream phosphorylation of other ATM substrates. No mutations were detected in ATM cDNA. A normal level of interaction between p53 and peptidyl-prolyl-isomerase Pin1 suggests that posttranslational modification was intact in these cells but operating at reduced level. Defective p53 stabilization was accompanied by defective induction of p53 effector genes and failure to induce apoptosis in response to DNA-damaging agents. Continued association between p53 and murine double minute-2 (Mdm2) occurred in irradiated ATL2ABR cells in response to DNA damage, and incubation with Mdm2 antagonists, nutlins, increased the stabilization of p53 and its transcriptional activity but failed to induce apoptosis. These results suggest that ATM-dependent stabilization of p53 and induction of apoptosis by radiation involve an additional factor(s) that is defective in ATL2ABR cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of the hypoxia-inducible factor (HIF) pathway is a critical step in the transcriptional response to hypoxia. Although many of the key proteins involved have been characterised, the dynamics of their interactions in generating this response remain unclear. In the present study, we have generated a comprehensive mathematical model of the HIF-1a pathway based on core validated components and dynamic experimental data, and confirm the previously described connections within the predicted network topology. Our model confirms previous work demonstrating that the steps leading to optimal HIF-1a transcriptional activity require sequential inhibition of both prolyl- and asparaginyl-hydroxylases. We predict from our model (and confirm experimentally) that there is residual activity of the asparaginyl-hydroxylase FIH (factor inhibiting HIF) at low oxygen tension. Furthermore, silencing FIH under conditions where prolyl-hydroxylases are inhibited results in increased HIF-1a transcriptional activity, but paradoxically decreases HIF-1a stability. Using a core module of the HIF network and mathematical proof supported by experimental data, we propose that asparaginyl hydroxylation confers a degree of resistance upon HIF-1a to proteosomal degradation. Thus, through in vitro experimental data and in silico predictions, we provide a comprehensive model of the dynamic regulation of HIF-1a transcriptional activity by hydroxylases and use its predictive and adaptive properties to explain counter-intuitive biological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor ?B (NF-?B), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-?B, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-?B at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NF?B and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatiotemporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.