502 resultados para Prokaryotes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) similar to 13 degrees N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetotactic bacteria are a heterologous group of motile prokaryotes, ubiquitous in aquatic habitats and cosmopolitan in distribution. Here, we studied the diversity of magnetotactic bacteria in a seawater pond within an intertidal zone at Huiquan Bay in the China Sea. The pond is composed of a permanently submerged part and a low tide subregion. The magnetotactic bacteria collected from the permanently submerged part display diversity in morphology and taxonomy. In contrast, we found a virtually homogenous population of ovoid-coccoid magnetotactic bacteria in the low tide subregion of the pond. They were bilophotrichously flagellated and exhibited polar magnetotactic behaviour. Almost all cells contained two chains of magnetosomes composed of magnetite crystals. Intriguingly, the combination of restriction fragment length polymorphism analysis (RFLP) and sequencing of cloned 16S rDNA genes from the low tide subregion samples as well as fluorescence in situ hybridization (FISH) revealed the presence of a homogenous population. Moreover, phylogenetic analysis indicated that the Qingdao Huiquan low tide magnetotactic bacteria belong to a new genus affiliated with the alpha-subclass of Proteobacteria. This finding suggests the adaptation of the magnetotactic bacterial population to the marine tide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new ciliate, Trimyema koreanum n. sp., isolated from hypersaline water (salinity of 293 parts per thousand) from a solar saltern in Korea, was investigated using live observation, protargol impregnation, and gene sequencing. Trimyema koreanum is about 30 x 13 mu m in vivo, has usually 23 longitudinal ciliary rows forming two distinct ciliary girdles visible both in vivo and in protargol impregnation. A third indistinct ciliary girdle as well as a girdle of mucocysts is distinguishable only in impregnated cells. We suggest T. koreanum as a new species, differing from the most similar species, T. marinum, by the presence of two distinct ciliary girdles (T. marinum usually has six ciliary girdles clearly visible in living cells and three anterior spirals that encircle the cell completely). Although the number of known 18S rRNA sequences in the genus Trimyema was limited, the Trimyema group including T. koreanum forms a strong clade. The phylogenetic position confirms that the isolate belongs to the genus Trimyema and is different from previously sequenced species. Trimyema koreanum is able to consume both prokaryotes and small eukaryotes (specifically, the alga Dunaliella sp.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly upregulated during recovery from growth-arrested states. This expression pattern is anticorrelated to nonoperon genes, consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. We provide evidence that operons become advantageous because, by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here,we reviewMtb protein PTMs and methods to assess their role in protective immunity against Mtb. © 2014 van Els, Corbière, Smits, vanGaans-van den Brink, Poelen, Mascart, Meiring and Locht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry/mass spectrometry (APCI-LC/MS/MS) has been applied to the study of bacteriochlorophylls c, d, and e of phototrophic prokaryotes. Cultures of Chlorobiaceae containing bacteriochlorophyll c, d or e were examined using a high-resolution high-performance liquid chromatography (HPLC) method and APCI-LC/MS/MS employing post-column addition of formic acid. The results reveal complex distributions of bacteriochlorophyll homologues, with some closely eluting species giving isobaric protonated molecules. On-line LC/MS/MS studies reveal characteristic fragment ions for bacteriochlorophylls c, d, and e. Fragmentations involving loss of the extended alkyl substituents that are unique to bacteriochlorophylls c, d and e and their derivatives have been rationalised by studying the phaeophorbides and the results applied to the direct study of the bacteriochlorophylls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron/exon structure and the mRNA of the mouse gene and, with respect to human BAC clones, the human gene. The genes span 10 kb (mouse) and 12 kb (human), with six exons arranged in a manner similar to other members of the IGSF. All intron/exon boundaries follow the GT-AG rule. Expression of the mouse Igsf6 gene is restricted to cells of the immune system, particularly macrophages. Northern blot revealed a single mRNA of 2.5 kb, in contrast to the human gene which is expressed as two mRNAs of 1 and 2.5 kb. The human and mouse genes were localized to a locus associated with inflammatory bowel disease. Analysis of the flanking regions of the Igsf6 gene revealed the presence of an unrelated gene, transcribed from the opposite strand of the DNA and oriented such that the Igsf6 gene is encoded entirely within an intron. An identical organization is seen in human. This gene of unknown function is transcribed and processed, contains homologues in Caenorhabditis elegans and prokaryotes, and is expressed in most organs in the mouse.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses a?ect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identi?ed from in vitro measurements of transcription elongation kinetics.

Results: Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three di?erent but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is su?cient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classi?er. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site.

Conclusions: This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MSbased strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidinecontaining peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario. © 2013 Biochemical Society.