1000 resultados para Project bonds
Resumo:
Objectives. To examine the effect of prolonged application time on the early and 3-year resin-dentin microtensile bond strength. Methods. Water/ethanol (Single Bond [SB]) and acetone-based systems (One Step [OS]) were employed. A flat superficial dentin surface was exposed in third human molars by wet abrasion. The adhesives were applied to a delimited area of 52 mm(2) on wet surfaces, for 40, 90, 150 and 300s. Four teeth were assigned for each experimental condition. Composite build-ups were constructed incrementally After water storage at 37 degrees C for 24 h, teeth were sectioned to obtain sticks with cross-sectional areas of 0.8 mm(2) to be tested in tension (0.5 mm/min) either immediately (IM) or after 3 years (3Y) of water storage. The microtensile bond strength (mu TBS) values were analyzed by two way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results. The 90- and 150-s groups achieved the highest IM mu TBS for OS (p < 0.01). For SB, the highest IM mu TBS values were observed after 300-s application (p < 0.01). Significant decreases in mu TBS were observed for OS in the 40- and 90-s groups after 3Y, except for the 150-s group. With regard to SB, after 3Y significant drops in mu TBS values were observed for the 40- and 150-s groups, except for the 300-s group. Significance. Prolonged application times can increase the immediate LTBS of two-step etch-and-rinse adhesive systems and make the adhesive layer more stable over time. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.
Resumo:
Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the effect of chemical degradation on bond strength of resin-modified glass-ionomer cements bonded to primary and permanent dentin. Methods: Class I cavities of permanent and primary extracted human molars were restored with two resin-modified glass-ionomer cements: Fuji 11 LC and Vitremer, and stored in water for 24 h. Half samples were immersed in 10% NaOCl aqueous solution for 5 h. Teeth were sectioned into beams and tested for microtensile bond strengths. Results were analyzed with multiple ANOVA and Tukey`s tests (p < 0.05). Analysis of debonded surfaces was performed by SEM. Results: 24 h bond strengths for Vitremer and Fuji 11 LC were similar. For Fuji 11, bond strength values were higher for primary than for permanent dentin. Vitremer bond strength was similar for both. Chemical degradation did not affect Fuji I] LC bond strength to dentin. However, decreases in bond strength were found for Vitremer groups after NaOCl immersion. Signs of glass ionomer-dentin interaction were evident by SEM analysis for Fuji 11 LC specimens. Conclusions: Vitremer and Fuji II presented similar bond strength at 24. Vitremer dentin bonds were prone to chemical degradation. Fuji II LC-dentin bonds showed typical features of glass-ionomer dentin interaction at the bonded interfaces, and were resistant to in vitro degradation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the effect of EDTA pre-treatment of dentine on resistance to degradation of the bond between dentine and resin-modified glass-ionomer cements. Methods: Sixty non-carious human molars underwent cavity preparations. Teeth were restored with Fuji II LC or Vitremer. Half of the cavities were restored following manufacturers` instructions whereas the other half was pre-treated with EDTA (0.1 M, pH 7.4) for 60 s. Teeth were stored in water at 37 degrees C for 24 h, 3 months or submitted to 10% NaOCl immersion for 5 h. Teeth were sectioned into beams (1 +/- 0.1 mm) and tested to failure in tension at 0.5 mm/min. Bond strength data (MPa) were analyzed by ANOVA and SNK multiple-comparisons tests (p < 0.05). Results: When EDTA was used for pre-treatment of dentine, higher bond strengths were observed for both cements. Degradation challenges produced a decrease in bond strength values only in the Vitremer group. This decrease was avoided when EDTA was used for dentine treatment before restoring with Vitremer. Conclusions: EDTA pre-treatment of dentine increases bond strength of resin modified glass-ionomers cements to dentine and improves resistance to degradation of the bond between Vitremer and dentine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Great Barrier Reef Water Quality Protection Plan (the Reef Plan) is a joint initiative of the Australian and Queensland Governments. The Reef Plan aims to progress an integrated approach to natural resource management planning by building on the existing partnerships between the different levels of government, industry groups, the community and research providers within the Reef catchments, principally through partnerships with the regional natural resource management (NRM) bodies.