904 resultados para Programming courses
Resumo:
Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.
Resumo:
Nonlinear Optimization Problems are usual in many engineering fields. Due to its characteristics the objective function of some problems might not be differentiable or its derivatives have complex expressions. There are even cases where an analytical expression of the objective function might not be possible to determine either due to its complexity or its cost (monetary, computational, time, ...). In these cases Nonlinear Optimization methods must be used. An API, including several methods and algorithms to solve constrained and unconstrained optimization problems was implemented. This API can be accessed not only as traditionally, by installing it on the developer and/or user computer, but it can also be accessed remotely using Web Services. As long as there is a network connection to the server where the API is installed, applications always access to the latest API version. Also an Web-based application, using the proposed API, was developed. This application is to be used by users that do not want to integrate methods in applications, and simply want to have a tool to solve Nonlinear Optimization Problems.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.
Resumo:
Remote Experimentation is an educational resource that allows teachers to strengthen the practical contents of science & engineering courses. However, building up the interfaces to remote experiments is not a trivial task. Although teachers normally master the practical contents addressed by a particular remote experiment they usually lack the programming skills required to quickly build up the corresponding web interface. This paper describes the automatic generation of experiment interfaces through a web-accessible Java application. The application displays a list of existent modules and once the requested modules have been selected, it generates the code that enables the browser to display the experiment interface. The tools? main advantage is enabling non-tech teachers to create their own remote experiments.
Resumo:
A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.
Resumo:
The present generation of eLearning platforms values the interchange of learning objects standards. Nevertheless, for specialized domains these standards are insufficient to fully describe all the assets, especially when they are used as input for other eLearning services. To address this issue we extended an existing learning objects standard to the particular requirements of a specialized domain, namely the automatic evaluation of programming problems. The focus of this paper is the definition of programming problems as learning objects. We introduce a new schema to represent metadata related to automatic evaluation that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. This new schema is being used in an interoperable repository of learning objects, called crimsonHex.
Resumo:
Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue we extended existing learning object standards to the particular requirements of a specialized domain. We present a definition of programming problems as learning objects that is compatible both with Learning Management Systems and with systems performing automatic evaluation of programs. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the valuation engine; and the roles of different assets - tests cases, program solutions, etc. We present also the EduJudge project and its main services as a case study on the use of the proposed definition of programming problems as learning objects.
Resumo:
This work is a contribution to the e-Framework, arguably the most prominent e-learning framework today, and consists of the definition of a service for the automatic evaluation of programming exercises. This evaluation domain differs from trivial evaluations modelled by languages such as the IMS Question & Test Interoperability (QTI) specification. Complex evaluation domains justify the development of specialized evaluators that participate in several business processes. These business processes can combine other type of systems such as Programming Contest Management Systems, Learning Management Systems, Integrated Development Environments and Learning Object Repositories where programming exercises are stored as Learning Objects. This contribution describes the implementation approaches used, more precisely, behaviours & requests, use & interactions, applicable standards, interface definition and usage scenarios.
Resumo:
Vishnu is a tool for XSLT visual programming in Eclipse - a popular and extensible integrated development environment. Rather than writing the XSLT transformations, the programmer loads or edits two document instances, a source document and its corresponding target document, and pairs texts between then by drawing lines over the documents. This form of XSLT programming is intended for simple transformations between related document types, such as HTML formatting or conversion among similar formats. Complex XSLT programs involving, for instance, recursive templates or second order transformations are out of the scope of Vishnu. We present the architecture of Vishnu composed by a graphical editor and a programming engine. The editor is an Eclipse plug-in where the programmer loads and edits document examples and pairs their content using graphical primitives. The programming engine receives the data collected by the editor and produces an XSLT program. The design of the engine and the process of creation of an XSLT program from examples are also detailed. It starts with the generation of an initial transformation that maps source document to the target document. This transformation is fed to a rewrite process where each step produces a refined version of the transformation. Finally, the transformation is simplified before being presented to the programmer for further editing.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
Several standards appeared in recent years to formalize the metadata of learning objects, but they are still insufficient to fully describe a specialized domain. In particular, the programming exercise domain requires interdependent resources (e.g. test cases, solution programs, exercise description) usually processed by different services in the programming exercise life-cycle. Moreover, the manual creation of these resources is time-consuming and error-prone leading to what is an obstacle to the fast development of programming exercises of good quality. This paper focuses on the definition of an XML dialect called PExIL (Programming Exercises Interoperability Language). The aim of PExIL is to consolidate all the data required in the programming exercise life-cycle, from when it is created to when it is graded, covering also the resolution, the evaluation and the feedback. We introduce the XML Schema used to formalize the relevant data of the programming exercise life-cycle. The validation of this approach is made through the evaluation of the usefulness and expressiveness of the PExIL definition. In the former we present the tools that consume the PExIL definition to automatically generate the specialized resources. In the latter we use the PExIL definition to capture all the constraints of a set of programming exercises stored in a learning objects repository.
Resumo:
Assessment plays a vital role in learning. This is certainly the case with assessment of computer programs, both in curricular and competitive learning. The lack of a standard – or at least a widely used format – creates a modern Ba- bel tower made of Learning Objects, of assessment items that cannot be shared among automatic assessment systems. These systems whose interoperability is hindered by the lack of a common format include contest management systems, evaluation engines, repositories of learning objects and authoring tools. A prag- matical approach to remedy this problem is to create a service to convert among existing formats. A kind of translation service specialized in programming prob- lems formats. To convert programming exercises on-the-fly among the most used formats is the purpose of the BabeLO – a service to cope with the existing Babel of Learning Object formats for programming exercises. BabeLO was designed as a service to act as a middleware in a network of systems typically used in auto- matic assessment of programs. It provides support for multiple exercise formats and can be used by: evaluation engines to assess exercises regardless of its format; repositories to import exercises from various sources; authoring systems to create exercises in multiple formats or based on exercises from other sources. This paper analyses several of existing formats to highlight both their differ- ences and their similar features. Based on this analysis it presents an approach to extensible format conversion. It presents also the features of PExIL, the pivotal format in which the conversion is based; and the function definitions of the proposed service – BabeLO. Details on the design and implementation of BabeLO, including the service API and the interfaces required to extend the conversion to a new format, are also provided. To evaluate the effectiveness and efficiency of this approach this paper reports on two actual uses of BabeLO: to relocate exercises to a different repository; and to use an evaluation engine in a network of heterogeneous systems.
Resumo:
Several standards have appeared in recent years to formalize the metadata of learning objects, but they are still insufficient to fully describe a specialized domain. In particular, the programming exercise domain requires interdependent resources (e.g. test cases, solution programs, exercise description) usually processed by different services in the programming exercise lifecycle. Moreover, the manual creation of these resources is time-consuming and error-prone, leading to an obstacle to the fast development of programming exercises of good quality. This chapter focuses on the definition of an XML dialect called PExIL (Programming Exercises Interoperability Language). The aim of PExIL is to consolidate all the data required in the programming exercise lifecycle from when it is created to when it is graded, covering also the resolution, the evaluation, and the feedback. The authors introduce the XML Schema used to formalize the relevant data of the programming exercise lifecycle. The validation of this approach is made through the evaluation of the usefulness and expressiveness of the PExIL definition. In the former, the authors present the tools that consume the PExIL definition to automatically generate the specialized resources. In the latter, they use the PExIL definition to capture all the constraints of a set of programming exercises stored in a learning objects repository.