997 resultados para Production transition
Resumo:
Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El’gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacialinterglacial cycles during the last three million years. Lowresolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.
Resumo:
The aim of this study was to explore potential causes and mechanisms for the sequence and temporal pattern of tree taxa, specifically for the shift from shrub-tundra to birch–juniper woodland during and after the transition from the Oldest Dryas to the Bølling–Allerød in the region surrounding the lake Gerzensee in southern Central Europe. We tested the influence of climate, forest dynamics, community dynamics compared to other causes for delays. For this aim temperature reconstructed from a δ18O-record was used as input driving the multi-species forest-landscape model TreeMig. In a stepwise scenario analysis, population dynamics along with pollen production and transport were simulated and compared with pollen-influx data, according to scenarios of different δ18O/temperature sensitivities, different precipitation levels, with/without inter-specific competition, and with/without prescribed arrival of species. In the best-fitting scenarios, the effects on competitive relationships, pollen production, spatial forest structure, albedo, and surface roughness were examined in more detail. The appearance of most taxa in the data could only be explained by the coldest temperature scenario with a sensitivity of 0.3‰/°C, corresponding to an anomaly of − 15 °C. Once the taxa were present, their temporal pattern was shaped by competition. The later arrival of Pinus could not be explained even by the coldest temperatures, and its timing had to be prescribed by first observations in the pollen record. After the arrival into the simulation area, the expansion of Pinus was further influenced by competitors and minor climate oscillations. The rapid change in the simulated species composition went along with a drastic change in forest structure, leaf area, albedo, and surface roughness. Pollen increased only shortly after biomass. Based on our simulations, two alternative potential scenarios for the pollen pattern can be given: either very cold climate suppressed most species in the Oldest Dryas, or they were delayed by soil formation or migration. One taxon, Pinus, was delayed by migration and then additionally hindered by competition. Community dynamics affected the pattern in two ways: potentially by facilitation, i.e. by nitrogen-fixing pioneer species at the onset, whereas the later pattern was clearly shaped by competition. The simulated structural changes illustrate how vegetation on a larger scale could feed back to the climate system. For a better understanding, a more integrated simulation approach covering also the immigration from refugia would be necessary, for this combines climate-driven population dynamics, migration, individual pollen production and transport, soil dynamics, and physiology of individual pollen production.
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
Climate plays an important role in controlling rates of weathering and weathered regolith production. Regolith production functions, however, seldom take climate parameters into account. Based on a climate-dependent weathered regolith production model, at low denudation rates, relative regolith thicknesses are less sensitive to changes in precipitation rates, while at high denudation rates, small changes in climatic parameters can result in complete stripping of hillslopes. This pattern is compounded by the long residence times and system response times associated with low denudation rates, and vice versa. As others have shown, the transition between regolith-mantled and bedrock slopes is dependent on the ratio of denudation to production. Here, we further suggest that this is itself a function of precipitation rate and temperature. We suggest that climatic parameters can be easily incorporated into existing soil production models and that such additions improve the predictive power of soil production models. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Chromatin condensation within the nucleus of developing spermatids involves replacement of histones by transition proteins, which are in turn replaced by protamines. The importance of transition proteins in the complex process of spermiogenesis has, to date, been only speculative. This study sought to investigate the extent to which transition proteins are essential or have redundant functions by characterizing sperm produced in mice expressing all combinations of Tnp-null alleles. Results from breeding trials of 8 weeks duration revealed that, on average, wildtype males produced about 14 offspring whereas TP2 and TP1 single-knockout males produced about 8 and 1 offspring, respectively, demonstrating their subfertility. Genotypes with less than two Tnp wildtype alleles, as well as double-knockout mutants, were completely infertile. Sperm from males with impaired fertility had poor progressive motility, heterogeneous chromatin condensation, incompletely processed protamine 2 and head and tail abnormalities. Generally, as the number of Tnp-null alleles increased so did the severity of abnormalities. However, specific morphological abnormalities were associated with the absence of an individual TP. Studies which sought to identify possible root causes for abnormalities in thiol-rich sperm structures revealed no differences in thiol content or sulfhydryl oxidation status within the nucleus but nuclei and tails from single-knockout mutants were severely disrupted following thiol reduction. Binding of fluorescent dyes to DNA was normal in sperm recovered from caput but abnormal in cauda epididymal sperm from TP1 knockouts and infertile double mutants. Injection of cauda epididymal sperm from double knockouts into oocytes produced very few offspring; however, after injection with testicular sperm, the efficiency was no different from wildtype. These results suggest DNA structural alterations or degradation during epididymal transport of sperm resulting in a diminished capacity of the paternal DNA of these sperm to produce offspring. The overall importance of transition proteins for normal chromatin condensation and production of fertile sperm has been demonstrated. Furthermore, identification of specific morphological abnormalities associated with the absence of an individual transition protein provides new evidence that the proteins are not completely redundant and each fulfills some unique function. ^