980 resultados para Probe Force Microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, atomic force microscopy (AFM) has been used to study the assembly of protein lysozyme on DNA molecule. Based on the electrostatic interaction, the positively charged lysozyme can easily bind onto the negatively charged DNA molecule surface. The protein molecules appear as globular objects on the DNA scaffold, which are distinguishable in the AFM images. At the same time, lysozyme molecules can be assembled onto DNA as dense or sporadic pattern by varying the protein concentration. This work may provide fundamental aspects for building protein nanostructures and studying of DNA-protein interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated DNA network structures on glass and sapphire substrates. As a comparison, we also formed the network structure on mica substrate. For titanate strontium substrate, however, DNA network can not be obtained even if it is wet-treated by Na2HPO4 solution to make it hydrophilic. We also discuss the factors that affect the DNA networks formed on various substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tapping mode atomic force microscopy (AFM) was applied to study the adsorption behavior of methanol on mica, highly oriented pyrolytic graphite (HOPG) and indium-tin oxide (ITO) coated glass substrates. On mica and HOPG substrates surfaces, the thin films of methanol with bilayer and multilayer were observed, respectively. The formation of irregular islands of methanol was also found on HOPG surface. On ITO surface only aggregates and clusters of methanol molecules were formed. The influence of sample preparation on the adsorption was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kind of simple atomic force microscopy (AFM) relocated technique, which takes advantage of homemade sample locator system, is used for investigating repeatedly imaging of some specific species on the whole substrate (over 1 x 1 cm(2)) with resolution about 400 nm. As applications of this sample locator system, single extended DNA molecules and plasmid DNA network are shown in different AFM operational modes: tapping mode and contact mode with different tips after the substrates have been moved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.