957 resultados para Probability distributions
Resumo:
O gerenciamento do tempo nos projetos de construção civil usualmente utiliza algoritmos determinísticos para o cálculo dos prazos de finalização e algoritmos PERT para avaliação da probabilidade de o mesmo terminar até uma determinada data. Os resultados calculados pelos algoritmos tradicionais possuem defasagens nos prazos se comparados aos encontrados na realidade o que vem fazendo com que a simulação venha se tornando uma ferramenta cada vez mais utilizada no gerenciamento de projetos. O objetivo da dissertação é estudar o problema dos prazos de finalização dos projetos desenvolvendo novas técnicas de cálculo que reflitam melhor os prazos encontrados na vida real. A partir disso é criada uma ferramenta prática de gerenciamento do tempo de atividades de projetos de construção enxuta baseada em planilha eletrônica onde serão utilizadas técnicas de simulação a eventos discretos, com base em distribuições de probabilidade como, por exemplo, a distribuição beta.
Resumo:
A síndrome de imunodeficiência adquirida (AIDS) é um problema de saúde pública que alcançou grandes proporções. Na ausência de uma vacina eficaz ou tratamento efetivo para a doença, esforços têm ser concentrados na prevenção. As políticas de saúde adotadas pelo governo brasileiro têm resultado em estabilização da enfermidade no país na faixa etária mais jovem, muito embora essa tendência não venha acontecendo nos outros grupos etários mais velhos. Verificar a incidência da AIDS em indivíduos idosos, no município de Niterói, RJ, de acordo com sexo, idade, período e coorte de nascimento de 1982-2011, além de analisar a dinâmica espacial da epidemia de AIDS em idosos (indivíduos com 60 anos ou mais) no estado do Rio de Janeiro no período de 1997-2011, são os objetivos deste estudo. Os dados da população por idade, sexo e grupo, foram obtidos a partir de: censos populacionais, contagem da população (1996), projeções intercensitárias, informações do Sistema de Informações de Agravos de Notificação, de Mortalidade e de Controle de Exames Laboratoriais. As taxas de incidência por 100 000 foram calculadas para as unidades geográficas através da contagem do número de novos casos de AIDS em indivíduos com 60 anos ou mais e tamanho da população do município no mesmo grupo etário. Para avaliar a dependência espacial das taxas foi calculado o índice de Moran global. Moran Mapas foram construídos para mostrar regimes de correlação espacial potencialmente distintos em diferentes subregiões. Distribuições de probabilidade e método Bayes empírico foram aplicados para a correção das taxas de incidência da AIDS. Ocorreram 575 casos de AIDS em residentes de Niterói com ≥50 anos de idade. Tendência crescente de taxas de incidência ao longo do tempo foi detectada em ambos os sexos. No estudo da dinâmica espacial da incidência da AIDS em idosos, Rio de Janeiro, no período de 1997 a 2011, as taxas entre homens e mulheres permaneceram flutuantes ao longo de todo o período. Não foi possível detectar correlação significativa global, usando o índice global de Moran. Na costa sudeste do Estado, onde se localizam as grandes áreas metropolitanas (Rio de Janeiro e Niterói), observaram-se grupos de cidades com taxas de até 20 casos por 100 000 hab. Esta concentração se torna mais pronunciada em períodos subsequentes, quando parece ocorrer propagação gradual da epidemia da costa sul até o norte do Rio de Janeiro.
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.
Resumo:
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.
Resumo:
We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.
Resumo:
Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.
Resumo:
A three-dimensional CFD-DEM model is proposed to investigate the aeolian sand movement. The results show that the mean particle horizontal velocity can be expressed by a power function of heights. The probability distribution of the impact and lift-off velocities of particles can be described by a log-normal function, and that of the impact and lift-off angles can be expressed by an exponential function. The probability distribution of particle horizontal velocity at different heights can be described as a lognormal function, while the probability distribution of longitudinal and vertical velocity can be described as a normal function. The comparison with previous two-dimensional calculations shows that the variations of mean particle horizontal velocity along the heights in two-dimensional and three-dimensional models are similar. However, the mean particle density of the two-dimensional model is larger than that in reality, which will result in the overestimation of sand transportation rate in the two-dimensional calculation. The study also shows that the predicted probability distributions of particle velocities are in good agreement with the experimental results.
Resumo:
Given a special type of triplet of reciprocal-lattice vectors in the monoclinic and orthorhombic systems, there exist eight three-phase structure seminvariants (3PSSs) for a pair of isomorphous structures. The first neighborhood of each of these 3PSSs is defined by the six magnitudes and the joint probability distribution of the corresponding six structure factors is derived according to Hauptman's neighborhood principle. This distribution leads to the conditional probability distribution of each of the 3PSSs, assuming as known the six magnitudes in its first neighborhood. The conditional probability distributions can be directly used to yield the reliable estimates (0 or pi) of the one-phase structure seminvariants (1PSSs) in the favorable case that the variances of the distributions happen to be small [Hauptman (1975). Acta Cryst. A31, 680-687]. The relevant parameters in the formulas for the monoclinic and orthorhombic systems are given in a tabular form. The applications suggest that the method is efficient for estimating the 1PSSs with values of 0 or pi.
Resumo:
Based on the ray theory and Longuet-Higgins's linear,model of sea waves, the joint distribution of wave envelope and apparent wave number vector is established. From the joint distribution, we define a new concept, namely the outer wave number spectrum, to describe the outer characteristics of ocean waves. The analytical form of the outer wave number spectrum, the probability distributions of the apparent wave number vector and its components are then derived. The outer wave number spectrum is compared with the inner wave number spectrum for the average status of wind-wave development corresponding to a peakness factor P = 3. Discussions on the similarity and difference between the outer wave number spectrum and inner one are also presented in the paper. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.
Resumo:
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably.
Resumo:
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.
Resumo:
We demonstrate that if two probability distributions D and E of sufficiently small min-entropy have statistical difference ε, then the direct-product distributions D^l and E^l have statistical difference at least roughly ε\s√l, provided that l is sufficiently small, smaller than roughly ε^{4/3}. Previously known bounds did not work for few repetitions l, requiring l>ε^2.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.