920 resultados para Probability Distribution
Resumo:
Following a Migdal-Kadanoff-type bond moving procedure, we derive the renormalisation-group equations for the characteristic function of the full probability distribution of resistance (conductance) of a three-dimensional disordered system. The resulting recursion relations for the first two cumulants, K, the mean resistance and K ~ t,he meansquare deviation of resistance exhibit a mobility edge dominated by large dispersion, i.e., K $ ’/ K=, 1, suggesting inadequacy of the one-parameter scaling ansatz.
Resumo:
Recurring water stresses are a major risk factor for rainfed maize cropping across the highly diverse agro-ecological environments of Queensland (Qld) and northern New South Wales (NNSW). Enhanced understanding of such agro-ecological diversity is necessary to more consistently sample target production environments for testing and targeting release of improved germplasm, and to improve the efficiency of the maize pre-breeding and breeding programs of Qld and New South Wales. Here, we used the Agricultural Production Systems Simulator (APSIM) – a well validated maize crop model to characterize the key distinctive water stress patterns and risk to production across the main maize growing regions of Qld and NNSW located between 15.8° and 31.5°S, and 144.5° and 151.8°E. APSIM was configured to simulate daily water supply demand ratios (SDRs) around anthesis as an indicator of the degree of water stress, and the final grain yield. Simulations were performed using daily climatic records during the period between 1890 and 2010 for 32 sites-soils in the target production regions. The runs were made assuming adequate nitrogen supply for mid-season maize hybrid Pioneer 3153. Hierarchical complete linkage analyses of the simulated yield resulted in five major clusters showing distinct probability distribution of the expected yields and geographic patterns. The drought stress patterns and their frequencies using SDRs were quantified using multivariate statistical methods. The identified stress patterns included no stress, mid-season (flowering) stress, and three terminal stresses differing in terms of severity. The combined frequency of flowering and terminal stresses was highest (82.9%), mainly in sites-soils combinations in the west of Qld and NNSW. Yield variability across the different sites-soils was significantly related to the variability in frequencies of water stresses. Frequencies of water stresses within each yield cluster tended to be similar, but different across clusters. Sites-soils falling within each yield cluster therefore could be treated as distinct maize production environments for testing and targeting newly developed maize cultivars and hybrids for adaptation to water stress patterns most common to those environments.
Location of concentrators in a computer communication network: a stochastic automation search method
Resumo:
The following problem is considered. Given the locations of the Central Processing Unit (ar;the terminals which have to communicate with it, to determine the number and locations of the concentrators and to assign the terminals to the concentrators in such a way that the total cost is minimized. There is alao a fixed cost associated with each concentrator. There is ail upper limit to the number of terminals which can be connected to a concentrator. The terminals can be connected directly to the CPU also In this paper it is assumed that the concentrators can bo located anywhere in the area A containing the CPU and the terminals. Then this becomes a multimodal optimization problem. In the proposed algorithm a stochastic automaton is used as a search device to locate the minimum of the multimodal cost function . The proposed algorithm involves the following. The area A containing the CPU and the terminals is divided into an arbitrary number of regions (say K). An approximate value for the number of concentrators is assumed (say m). The optimum number is determined by iteration later The m concentrators can be assigned to the K regions in (mk) ways (m > K) or (km) ways (K>m).(All possible assignments are feasible, i.e. a region can contain 0,1,…, to concentrators). Each possible assignment is assumed to represent a state of the stochastic variable structure automaton. To start with, all the states are assigned equal probabilities. At each stage of the search the automaton visits a state according to the current probability distribution. At each visit the automaton selects a 'point' inside that state with uniform probability. The cost associated with that point is calculated and the average cost of that state is updated. Then the probabilities of all the states are updated. The probabilities are taken to bo inversely proportional to the average cost of the states After a certain number of searches the search probabilities become stationary and the automaton visits a particular state again and again. Then the automaton is said to have converged to that state Then by conducting a local gradient search within that state the exact locations of the concentrators are determined This algorithm was applied to a set of test problems and the results were compared with those given by Cooper's (1964, 1967) EAC algorithm and on the average it was found that the proposed algorithm performs better.
Resumo:
The probability distribution for the displacement x of a particle moving in a one-dimensional continuum is derived exactly for the general case of combined static and dynamic gaussian randomness of the applied force. The dynamics of the particle is governed by the high-friction limit of Brownian motion discussed originally by Einstein and Smoluchowski. In particular, the mean square displacement of the particle varies as t2 for t to infinity . This ballistic motion induced by the disorder does not give rise to a 1/f power spectrum, contrary to recent suggestions based on the above dynamical model.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
The time–history of the performance of a system is treated as a stochastic corrective process, in which deterioration due to aging is counteracted at brief maintenance checks. Using a diffusion approximation for the deterioration, simple models are proposed for describing maintenance either by component replacement or by performance restoration. Equilibrium solutions of the models show that the performance has a probability distribution with exponential tails: the uncritical use of Gaussians can grossly underestimate the probability of poor performance. The proposed models are supported by recent observational evidence on aircraft track-keeping errors, which are shown to follow the modified exponential distribution derived here. The analysis also brings out the relation between the deterioration characteristics of the system and the intensity of the maintenance effort required to achieve a given performance reliability.
Resumo:
State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.
Resumo:
We study a scheduling problem in a wireless network where vehicles are used as store-and-forward relays, a situation that might arise, for example, in practical rural communication networks. A fixed source node wants to transfer a file to a fixed destination node, located beyond its communication range. In the absence of any infrastructure connecting the two nodes, we consider the possibility of communication using vehicles passing by. Vehicles arrive at the source node at renewal instants and are known to travel towards the destination node with average speed v sampled from a given probability distribution. Th source node communicates data packets (or fragments) of the file to the destination node using these vehicles as relays. We assume that the vehicles communicate with the source node and the destination node only, and hence, every packet communication involves two hops. In this setup, we study the source node's sequential decision problem of transferring packets of the file to vehicles as they pass by, with the objective of minimizing delay in the network. We study both the finite file size case and the infinite file size case. In the finite file size case, we aim to minimize the expected file transfer delay, i.e. expected value of the maximum of the packet sojourn times. In the infinite file size case, we study the average packet delay minimization problem as well as the optimal tradeoff achievable between the average queueing delay at the source node buffer and the average transit delay in the relay vehicle.
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
Resumo:
Anderson localised states in the bulk of a disordered medium appear as sharp resonances near the surface. The resonant backscattering leads to an energy-dependent random time delay for an incident electron. We derive an analytic expression for the delay-time probability distribution at a given energy. This is shown to give a 1/f noise for the surface currents in general.
Resumo:
A detailed characterization of interference power statistics in CDMA systems is of considerable practical and theoretical interest. Such a characterization for uplink inter-cell interference has been difficult because of transmit power control, randomness in the number of interfering mobile stations, and randomness in their locations. We develop a new method to model the uplink inter-cell interference power as a lognormal distribution, and show that it is an order of magnitude more accurate than the conventional Gaussian approximation even when the average number of mobile stations per cell is relatively large and even outperforms the moment-matched lognormal approximation considered in the literature. The proposed method determines the lognormal parameters by matching its moment generating function with a new approximation of the moment generating function for the inter-cell interference. The method is tractable and exploits the elegant spatial Poisson process theory. Using several numerical examples, the accuracy of the proposed method in modeling the probability distribution of inter-cell interference is verified for both small and large values of interference.
Resumo:
We present a theory of multichannel disordered conductors by directly studying the statistical distribution of the transfer matrix for the full system. The theory is based on the general properties of the scattering system: flux conservation, time-reversal invariance, and the appropriate combination requirement when two wires are put together. The distribution associated with systems of very small length is then selected on the basis of a maximum-entropy criterion; a fixed value is assumed for the diffusion coefficient that characterizes the evolution of the distribution as the length increases. We obtain a diffusion equation for the probability distribution and compute the average of a few relevant quantities.
Resumo:
The probability distribution of the instantaneous incremental yield of an inelastic system is characterized in terms of a conditional probability and average rate of crossing. The detailed yield statistics of a single degree-of-freedom elasto-plastic system under a Gaussian white noise are obtained for both nonstationary and stationary response. The present analysis indicates that the yield damage is sensitive to viscous damping. The spectra of mean and mean square damage rate are presented.
Resumo:
In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.