966 resultados para Preparation methods for cerium oxide
Resumo:
In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
The sample preparation method preceding the urinary erythropoietin (EPO) doping test is based on several concentration and ultrafiltration steps. In order to improve the quality of isoelectric focusing (IEF) gel results and therefore, the sensitivity of the EPO test, new sample preparation methods relying on affinity purification were recently proposed. This article focuses on the evaluation and validation of disposable immunoaffinity columns targeting both endogenous and recombinant EPO molecules in two World Anti-Doping Agency (WADA) accredited anti-doping laboratories. The use of the columns improved the resolution of the IEF profiles considerably when compared with the classical ultrafiltration method, and the columns' ability to ensure the isoform integrity of the endogenous and exogenous EPO molecules was confirmed. Immunoaffinity columns constitute therefore a potent and reliable tool for the preparation of urine samples and their use will significantly improve the sensitivity and specificity of the actual urinary EPO test.
Resumo:
The self-assembly technique is a powerful tool to fabricate ultrathin films from organic compounds aiming at technological applications in molecular electronics. This relatively new approach allows molecularly flat films to be obtained on a simple and cheap fashion from various types of material, including polyelectrolytes, conducting polymers, dyes and proteins. The resulting multilayer films may be fabricated according to specific requirements since their structural and physical properties may be controlled at the molecular level. In this review we shall comment upon the evolution of preparation methods for ultrathin films, the process of adsorption and their main properties, as well as some examples of technological applications of layer-by-layer or self-assembled films.
Resumo:
Thiosemicarbazones are a class of compounds known by their chemical and biological properties, such as antitumor, antibacterial, antiviral and antiprotozoal activity. Their ability to form chelates with metals has great importance in their biological activities. Their synthesis is very simple, versatile and clean, usually giving high yields. They are largely employed as intermediates, in the synthesis of others compounds. This article is a survey of some of these characteristics showing their great importance to organic and medicinal chemistry.
Resumo:
Molecules containing the 4-thiazolidinone ring are known to possess a wide range of biological properties including antimicrobial and anti-inflammatory activities among others. These compounds can be synthesized by cyclization reactions involving alpha-haloacetic acid or alpha-mercaptoacetic acid and employed in several chemoselective reactions. Comprehensive reviews have been written on 4-thiazolidinones in 1961 by Brown and in 1980 by Singh et al. In the recent literature, some new synthesis methods for 4-thiazolidinone derivatives and several reactions have been reported. These advances warrant to review the chemical and biological properties of compounds with this important heterocycle employed in synthetic organic chemistry and medicinal chemistry.
Resumo:
A chromatographic method was developed for cholesterol determination in feed for ruminants using response surface methodology. Among the five approaches of sample preparation methods tested, the saponification of the sample without heating presented less interference in the gas chromatography. The method presented a relative standard deviation (RSD) of 4.3%, recoveries between 84 and 87% and detection limit of 0.001 mg of cholesterol per g of feed.
Resumo:
Lipid nanoemulsions have recently been proposed as parenteral delivery systems for poorly-soluble drugs. These systems consist of nanoscale oil/water dispersions stabilized by an appropriate surfactant system in which the drug is incorporated into the oil core and/or adsorbed at the interface. This article reviews technological aspects of such nanosystems, including their composition, preparation methods, and physicochemical properties. From this review, it was possible to identify five groups of nanoemulsions based on their composition. Biopharmaceutical aspects of formulations containing some commercially available drugs (diazepam, propofol, dexamethasone, etomidate, flurbiprofen and prostaglandin E1) were then discussed.
Resumo:
Sample preparation is commonly considered a key step to achieve selective, sensitive, and reliable chemical analyses, particularly those involving complex matrices. Although the application of electric fields to improve the speed and efficiency of sample preparation methods has been proven, this approach is still considered to be state-of-the-art; hence, further development is necessary to improve future applications. This review describes the fundamentals, advances, applications, and perspectives of using electric fields to enhance sample preparation techniques such as liquid-liquid and solid-liquid extractions in conventional and microscale devices.
Resumo:
This work reports on the investigation of nanosized CeO2-ZnO systems prepared by Pechini's method. The structural and morphological characterization of CeO2-ZnO systems as well as the characterization of CeO2 and ZnO separately, showed that the employed method result in powders with spheroidal particles whose size are in the range 30 - 200 nm, which is appropriate to provide homogeneous suspensions. The ZnO present in the prepared mixed oxides seems to increase particle size distribution and to influence the arrangement of the particles after powder dispersion.
Resumo:
This study aims to analyze the influence of dehydration and different preparation methods during home processing related toalpha-carotene, beta-carotene and total carotenoids stability in carrots. Vitamin A values were evaluated after different treatments. Thus, carrots were submitted to steam cooking, water cooking with and without pressure, moist/dry cooking and conventional dehydration. Determination of alpha- and beta-carotenes was made by High-Performance Liquid Chromatography (HPLC) (conditions were developed by us) using spectrophotometric detection visible-UV at 470 nm; a RP-18 column and methanol: acetonitrile: ethyl acetate (80: 10: 10) as mobile phase. Total carotenoids quantification was made by 449 nm spectrophotometer. The retention of the analyzed carotenoids ranged from 60.13 to 85.64%. Water cooking without pressure promoted higher retention levels of alpha- and beta-carotene and vitamin A values, while water cooking with pressure promoted higher retention levels of total carotenoids. Dehydration promoted the highest carotenoid losses. The results showed that, among the routinely utilized methods under domestic condition, cooking without pressure, if performed under controlled time and temperature, is the best method as it reduces losses in the amount of alpha- and beta-carotene, the main carotenoids present in the carrots. Despite the significant carotenoid losses, carrots prepared through domestic methods, remain a rich source of provitamin A.
Resumo:
AbstractThermal processing and production practices used in vegetables can cause changes in their phytochemical contents. Eggplant is characterized by its high antioxidant content. The objective of this work was to determine levels of anthocyanins, polyphenols, and flavonoids and antioxidant capacity in organically and conventionally grown eggplant prepared fresh or subjected to one of three thermal preparation methods: boiling, baking or steaming. The soluble and hydrolyzable polyphenols and flavonoids content were quantified by Folin-Ciocalteu and Aluminum chloride methods, respectively. Anthocyanins were quantified according to the pH differential method. Antioxidant capacity was determined by DPPH and ORAC methods. The results showed differences between organic and conventional eggplant for some variables although cultivation method did not have a consistent effect. Hydrolysable polyphenol content was greater, and soluble and hydrolysable antioxidant capacities were higher in organically grown eggplant, while anthocyanin content was greater in conventionally grown eggplant. Fresh eggplant produced under conventional cultivation had a much greater content of anthocyanins compared to that of other cultivation method-thermal treatment combination. In general, steamed eggplant contained higher total polyphenol and flavonoid levels as well as greater antioxidant capacity. Steamed eggplant from both conventional and organic systems also had high amounts of anthocyanins compared to other thermal treatments.
Resumo:
In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.
Resumo:
The changes in surface acidity/basicity and catalytic activity of cerium oxide due to surface modification by sulphate ion have been investigated. Electron donor properties of both the modified and unmodified oxides have been studied using electron acceptors of various electron affinity values, viz. 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro--l, 4-benzoquinone. p-dinitrobenzene and m-dinitrobenzene in order to find out whether the increase in acidity on suphation is due to the generation of new acidic sites or they are formed at the expense of some of the basic sites. The surface acidity/basicity has been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of the oxides for esterification of acetic acid using l-butanol, reduction of cyclohexanone with 2- propanol and oxidation of cyclohexanol using benzophenone.
Resumo:
One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.