958 resultados para Preclinical drug testing
Resumo:
Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.
Resumo:
Recent technical advances have enabled for the first time, reliable in vitro culture of prostate cancer samples as prostate cancer organoids. This breakthrough provides the significant possibility of high throughput drug screening covering the spectrum of prostate cancer phenotypes seen clinically. These advances will enable precision medicine to become a reality, allowing patient samples to be screened for effective therapeutics ex vivo, with tailoring of treatments specific to that individual. This will hopefully lead to enhanced clinical outcomes, avoid morbidity due to ineffective therapies and improve the quality of life in men with advanced prostate cancer.
Resumo:
In this study, an in vitro multicellular tumor spheroid model was developed using microencapsulation, and the feasibility of using the microencapsulated. multicellular tumor spheroid (MMTS) to test the effect of chemotherapeutic drugs was investigated. Human MCF-7 breast cancer cells were encapsulated in alginate-poly-L-lysine-alginate (APA) microcapsules, and a single multicellular spheroid 150 mu m in diameter was formed in the microcapsule after 5 days of cultivation. The cell morphology, proliferation, and viability of the MMTS were characterized using phase contrast microscopy, BrdU-Iabeling, MTT stain, calcein AM/ED-2 stain, and H&E stain. It demonstrated that the MMTS was viable and that the proliferating cells were mainly localized to the periphery of the cell spheroid and the apoptotic cells were in the core. The MCF-7 MMTS was treated with mitomycin C (MC) at a concentration of 0.1, 1, or 10 times that of peak plasma concentration (ppc) for up to 72 h. The cytotoxicity was demonstrated. clearly by the reduction in cell spheroid size and the decrease in cell viability. The MMTS was further used to screen the anticancer effect of chemotherapeutic drugs, treated with MC, adriamycin (ADM) and 5-fluorouracil (5-FU) at concentrations of 0.1, 1, and 10 ppc for 24, 48, and 72 h. MCF-7 monolayer culture was used as control. Similar to monolayer culture, the cell viability of MMTS was reduced after treatment with anticancer drugs. However, the inhibition rate of cell viability in MMTS was much lower than that in monolayer culture. The MMTS was more resistant to anticancer drugs than monolayer culture. The inhibition rates of cell viability were 68.1%, 45.1%, and 46.8% in MMTS and 95.1%, 86.8%, and 91.6% in monolayer culture treated with MC, ADM, and 5-FU at 10 ppc for 72 h, respectively. MC showed the strongest cytotoxicity in both MMTS and monolayer, followed by 5-FU and ADM. It demonstrated that the MMTS has the potential to be a rapid and valid in vitro model to screen chemotherapeutic drugs with a feature to mimic in vivo three-dimensional (3-D) cell growth pattern.
Resumo:
A study was conducted to determine the feasibility of performing
Resumo:
Imatinib is the standard of care for patients with advanced metastatic gastrointestinal stromal tumors (GIST), and is also approved for adjuvant treatment in patients at substantial risk of relapse. Studies have shown that maximizing benefit from imatinib depends on long-term administration at recommended doses. Pharmacokinetic (PK) and pharmacodynamic factors, adherence, and drug-drug interactions can affect exposure to imatinib and impact clinical outcomes. This article reviews the relevance of these factors to imatinib's clinical activity and response in the context of what has been demonstrated in chronic myelogenous leukemia (CML), and in light of new data correlating imatinib exposure to response in patients with GIST. Because of the wide inter-patient variability in drug exposure with imatinib in both CML and GIST, blood level testing (BLT) may play a role in investigating instances of suboptimal response, unusually severe toxicities, drug-drug interactions, and suspected non-adherence. Published clinical data in CML and in GIST were considered, including data from a PK substudy of the B2222 trial correlating imatinib blood levels with clinical responses in patients with GIST. Imatinib trough plasma levels <1100ng/mL were associated with lower rates of objective response and faster development of progressive disease in patients with GIST. These findings have been supported by other analyses correlating free imatinib (unbound) levels with response. These results suggest a future application for imatinib BLT in predicting and optimizing therapeutic response. Nevertheless, early estimates of threshold imatinib blood levels must be confirmed prospectively in future studies and elaborated for different patient subgroups.
Resumo:
Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests. We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
During the previous 10 years, global R&D expenditure in the pharmaceuticals and biotechnology sector has steadily increased, without a corresponding increase in output of new medicines. To address this situation, the biopharmaceutical industry's greatest need is to predict the failures at the earliest possible stage of the drug development process. A major key to reducing failures in drug screenings is the development and use of preclinical models that are more predictive of efficacy and safety in clinical trials. Further, relevant animal models are needed to allow a wider testing of novel hypotheses. Key to this is the developing, refining, and validating of complex animal models that directly link therapeutic targets to the phenotype of disease, allowing earlier prediction of human response to medicines and identification of safety biomarkers. Morehover, well-designed animal studies are essential to bridge the gap between test in cell cultures and people. Zebrafish is emerging, complementary to other models, as a powerful system for cancer studies and drugs discovery. We aim to investigate this research area designing a new preclinical cancer model based on the in vivo imaging of zebrafish embryogenesis. Technological advances in imaging have made it feasible to acquire nondestructive in vivo images of fluorescently labeled structures, such as cell nuclei and membranes, throughout early Zebrafishsh embryogenesis. This In vivo image-based investigation provides measurements for a large number of features at cellular level and events including nuclei movements, cells counting, and mitosis detection, thereby enabling the estimation of more significant parameters such as proliferation rate, highly relevant for investigating anticancer drug effects. In this work, we designed a standardized procedure for accessing drug activity at the cellular level in live zebrafish embryos. The procedure includes methodologies and tools that combine imaging and fully automated measurements of embryonic cell proliferation rate. We achieved proliferation rate estimation through the automatic classification and density measurement of epithelial enveloping layer and deep layer cells. Automatic embryonic cells classification provides the bases to measure the variability of relevant parameters, such as cell density, in different classes of cells and is finalized to the estimation of efficacy and selectivity of anticancer drugs. Through these methodologies we were able to evaluate and to measure in vivo the therapeutic potential and overall toxicity of Dbait and Irinotecan anticancer molecules. Results achieved on these anticancer molecules are presented and discussed; furthermore, extensive accuracy measurements are provided to investigate the robustness of the proposed procedure. Altogether, these observations indicate that zebrafish embryo can be a useful and cost-effective alternative to some mammalian models for the preclinical test of anticancer drugs and it might also provides, in the near future, opportunities to accelerate the process of drug discovery.
Resumo:
OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.
Resumo:
The current analysis examined the association of several demographic and behavioral variables with prior HIV testing within a population of injection drug users (IDUs) living in Harris County, Texas in 2005 (n=563). After completing the initial univariate analyses of all potential predictors, a multivariable model was created. This model was designed to guide future intervention efforts. Data used in this analysis were collected by the University of Texas School of Public Health in association with the Houston Department of Health and Human Services for the first IDU cycle of the National HIV Behavioral Surveillance System. About 76% of the IDUs reported previously being tested for HIV. Demographic variables that displayed a significant association with prior testing during the univariate analyses include age, race/ethnicity, birth outside the United States, education level, recent arrest, and current health insurance coverage. Several drug-related and sexual behaviors also demonstrated significant associations with prior testing, including age of first injection drug use, heroin use, methamphetamine use, source of needles or syringes, consistent use of new needles, recent visits to a shooting gallery or similar location, previous alcohol or drug treatment, condom use during their most recent sexual encounter, and having sexual partners who also used injection drugs. Additionally, the univariate analyses revealed that recent use of health or HIV prevention services was associated with previously testing for HIV. The final multivariable model included age, race/ethnicity, recent arrest, previous alcohol or drug treatment, and heroin use. ^
Resumo:
Objective. To explore (1) the association between "club drug" use and unprotected anal intercourse (UAI) and (2) the association between binge drug use and UAI among HIV seronegative men who have sex with men (MSM) seeking HIV/STD testing at a local clinic in Houston. ^ Study design. A sub-sample of 297 HIV seronegative MSM from a cross-sectional study of drug and sexual behavior in Houston was conducted in 2006. Patients who were seeking HIV/STD testing at a local MSM-identified STD clinic were recruited for an anonymous computer-assisted interview. Analysis of identified secondary data consisted of self-reported information about demographic characteristics, use of drugs, and sexual behaviors. ^ Results. With new and casual sex partners, there was a strong and statistically significant association between use of "club drugs" and UAI. No association between binge drug use and UAI was evident. Men aware of HIV seropositivity or unaware of the HIV serostatus of their primary partner were less likely to report UAI. ^ Conclusion. These data suggest that in the Houston area, HIV-negative MSM club drug users, particularly multiple drug users, are at higher risk of UAI than comparable MSMs who do not use club drugs. Episode-level data regarding binge use of these and other drugs, and UAI should be collected in future studies to explore their relationship. The 'new partner' category should be added to sex partner types to measure sex and drug use behaviors in future studies.^ Keywords. HIV-negative MSM; club drugs; unprotected anal intercourse; binge drug use. ^
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Statistics on employees returned to duty and results of return-to-duty tests and follow-up tests are presented separately from results of the other four test types because return-to-duty tests and follow-up tests represent a different segment of the test population and not all employers offer rehabilitation.