900 resultados para Precision timed machines
Resumo:
In this paper, a new approach to enhance the transmission system distance relay co-ordination is presented. The approach depends on the apparent impedance loci seen by the distance relay during all possible disturbances. In a distance relay, the impedance loci seen at the relay location is obtained by extensive transient stability studies. Support vector machines (SVMs), a class of patterns classifiers are used in discriminating zone settings (zone-1, zone-2 and zone-3) using the signals to be used by the relay. Studies on a sample 9-bus are presented for illustrating the proposed scheme.
Resumo:
There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.
Resumo:
A simple yet efficient method for the minimization of incompletely specified sequential machines (ISSMs) is proposed. Precise theorems are developed, as a consequence of which several compatibles can be deleted from consideration at the very first stage in the search for a minimal closed cover. Thus, the computational work is significantly reduced. Initial cardinality of the minimal closed cover is further reduced by a consideration of the maximal compatibles (MC's) only; as a result the method converges to the solution faster than the existing procedures. "Rank" of a compatible is defined. It is shown that ordering the compatibles, in accordance with their rank, reduces the number of comparisons to be made in the search for exclusion of compatibles. The new method is simple, systematic, and programmable. It does not involve any heuristics or intuitive procedures. For small- and medium-sized machines, it canle used for hand computation as well. For one of the illustrative examples used in this paper, 30 out of 40 compatibles can be ignored in accordance with the proposed rules and the remaining 10 compatibles only need be considered for obtaining a minimal solution.
Resumo:
A simple procedure for the state minimization of an incompletely specified sequential machine whose number of internal states is not very large is presented. It introduces the concept of a compatibility graph from which the set of maximal compatibles of the machine can be very conveniently derived. Primary and secondary implication trees associated with each maximal compatible are then constructed. The minimal state machine covering the incompletely specified machine is then obtained from these implication trees.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi+ pi- using 2.4 fb^-1 of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c^2. Under the single-state model the X(3872) mass is measured to be 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c^2, which is the most precise determination to date.
Resumo:
This paper presents real-time simulation models of electrical machines on FPGA platform. Implementation of the real-time numerical integration methods with digital logic elements is discussed. Several numerical integrations are presented. A real-time simulation of DC machine is carried out on this FPGA platform and important transient results are presented. These results are compared to simulation results obtained through a commercial off-line simulation software
Resumo:
he growth of high-performance application in computer graphics, signal processing and scientific computing is a key driver for high performance, fixed latency; pipelined floating point dividers. Solutions available in the literature use large lookup table for double precision floating point operations.In this paper, we propose a cost effective, fixed latency pipelined divider using modified Taylor-series expansion for double precision floating point operations. We reduce chip area by using a smaller lookup table. We show that the latency of the proposed divider is 49.4 times the latency of a full-adder. The proposed divider reduces chip area by about 81% than the pipelined divider in [9] which is based on modified Taylor-series.