949 resultados para Potential energy surfaces
Resumo:
The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.
Resumo:
The potential energy surface for the first step of the alkaline hydrolysis of methyl acetate was explored by a variety of methods. The conformational search routine within SPARTAN was used to determine the lowest energy am1 and pm3 structures for the anionic tetrahedral intermediate. Ab initio single point and geometry optimization calculations were performed to determine the lowest energy conformer, and the linear synchronous transition (lst) method was used to provide an initial structure for transition state optimization. Transition states were obtained at the am1, pm3, 3-21G, and 3-21 + G levels of theory. These transition states were compared with the anionic tetrahedral intermediates to examine the assumption that the intermediate is a good model for the transition state. In addition, the Cramer/Truhlar sm3 solvation model was used at the semiempirical level to compare gas phase and aqueous alkaline hydrolysis of methyl acetate.
Resumo:
A Maple scheme for quickly parameterizing vibrational potential energy functions is presented. As an example, the potential energy function's parameters for the vibrational motions in H_2O_2 are obtained assuming the simplest potential energy function. This paper was originally written as a research paper, but rejected by the referees. It is therefore being edited into an ``educational'' paper for student usage.
Resumo:
The interactions employed in the “linear” reaction A(g)+BC(g) -> AB(g) + C(g) in a “one dimensional world” can be used to illustrate the “reaction coördinate”, using Maple, in a manner which allows students to inspect potential energy surfaces, make contour maps of those surfaces, and conceptually construct the “reaction coördinate” by tracing the local minimum path on the surface created.“one dimensional world” can be used to illustrate the “reaction coördinate”, using Maple, in a manner which allows students to inspect potential energy surfaces, make contour maps of those surfaces, and conceptually construct the “reaction coördinate” by tracing the local minimum path on the surface created.
Resumo:
Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.
Resumo:
So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.
Resumo:
Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
Resumo:
The hierarchical properties of potential energy landscapes have been used to gain insight into thermodynamic and kinetic properties of protein ensembles. It also may be possible to use them to direct computational searches for thermodynamically stable macroscopic states, i.e., computational protein folding. To this end, we have developed a top-down search procedure in which conformation space is recursively dissected according to the intrinsic hierarchical structure of a landscape's effective-energy barriers. This procedure generates an inverted tree similar to the disconnectivity graphs generated by local minima-clustering methods, but it fundamentally differs in the manner in which the portion of the tree that is to be computationally explored is selected. A key ingredient is a branch-selection algorithm that takes advantage of statistically predictive properties of the landscape to guide searches down the tree branches that are most likely to lead to the physically relevant macroscopic states. Using the computational folding of a β-hairpin-forming peptide as an example, we show that such predictive properties indeed exist and can be used for structure prediction by free-energy global minimization.
Resumo:
Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)
Resumo:
Three different radical anions of the empirical formula C5H2 have been generated by negative ion chemical ionization mass spectrometry in the gas phase. The isomers C4CH2 •-, and HC5H•- have been synthesized by unequivocal routes and their connectivities confirmed by deuterium labeling, charge reversal, and neutralization reionization experiments. The results also provided evidence for the existence of neutrals C4CH2, C2CHC2H, and HC5H as stable species; this is the first reported observation of C2CHC2H. Ab initio calculations confirm these structures to be minima on the anion and neutral potential energy surfaces.
Resumo:
The potential energy surfaces of the HCN<->HNC and LiCN<->LiNC isomerization processes were determined by ab initio theory using fully optimized triple-zeta double polarization types of basis sets. Both the MP2 corrections and the QCISD level of calculations were performed to correct for the electron correlation. Results show that electron correlation has a considerable influence on the energetics and structures. Analysis of the intramolecular bond rearrangement processes reveals that, in both cases, H (or Li+) migrates in an almost elliptic path in the plane of the molecule. In HCN<->HNC, the migrating hydrogen interacts with the in-plane pi,pi* orbitals of CN, leading to a decrease in the C-N bond order. In LiCN<->LiNC, Li+ does not interact with the corresponding pi,pi* orbitals of CN.
Resumo:
Qualitative potential energy surfaces for hydrogen abstraction from alkanes containing primary, secondary and tertiary C-H bonds by a photo-excited ketone have been reported, The results suggest that the activation barriers for these processes decrease in the order primary > secondary > tertiary in agreement with the observed trend in the rate constants. The analysis of the electronic structure of the transition-state reveal that electron-transfer from hydrocarbon to ketone and formation of a new bond are almost synchronous in the hydrogen transfer process. The tunneling of hydrogen is not important in the normal temperature region even though the barriers are small.
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.