919 resultados para Postmenopausal Women
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The aim of this study was to assess clinical and inflammatory markers in nonalcoholic fatty liver disease (NAFLD) in postmenopausal women with metabolic syndrome.Methods: This cross-sectional study included 180 Brazilian women (age >= 45 years and amenorrhea >= 12 months). Metabolic syndrome was diagnosed by the presence of at least three of the following indicators: Waist circumference (WC) > 88 cm, triglycerides (TGs) >= 150 mg/dL, high-density lipoprotein (HDL) < 50 mg/dL; blood pressure >= 130/85 mmHg; and glucose >= 100 mg/dL. NAFLD was diagnosed by abdominal ultrasound. Participants were divided into three groups: Metabolic syndrome alone (n = 53); metabolic syndrome + NAFLD (n = 67); or absence of metabolic syndrome or NAFLD (control, n = 60). Clinical, anthropometric, and biochemical variables were quantified. The inflammatory profile included adiponectin, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha). Data were submitted to statistical analysis using a Tukey test, analysis of variance (ANOVA), chi-squared, Pearson correlation, and logistic regression (odds ratio, OR).Results: Women with metabolic syndrome + NAFLD, abdominal obesity, high glucose, and insulin resistance by HOMA-IR were compared to women with metabolic syndrome alone and controls (P < 0.05). High values of IL-6 and TNF-alpha and low values of adiponectin were observed among women with metabolic syndrome alone or metabolic syndrome + NAFLD when compared to controls (P < 0.05). In multivariate analysis, the variables considered as risk of NAFLD development were: High systolic blood pressure (SBP) [(OR 1.02, 95% confidence interval (CI) 1.0-1.04]; large WC (OR 1.07, 95% CI 1.01-1.13); insulin resistance (OR 3.81, 95% CI 2.01-7.13); and metabolic syndrome (OR 8.68, 95% CI 3.3-24.1). Adiponectin levels reduced NAFLD risk (OR 0.88, 95% CI 0.80-0.96).Conclusion: In postmenopausal women, metabolic syndrome, abdominal obesity, and insulin resistance were risk markers for the development of NAFLD, whereas higher adiponectin values indicated a protection marker.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To evaluate the prevalence and risk factors of non-alcoholic fatty liver disease (NAFLD) in postmenopausal women.Methods A cross-sectional study was carried involving 188 women (age >= 45 years and amenorrhea >= 12 months) attending the outpatient unit in south-eastern Brazil. Exclusion criteria were liver disease (hepatitis B and C, cholestatic disease, liver insufficiency), use of drugs that affect liver metabolism; alcoholics; AIDS or cancer history; and morbid obesity. NAFLD was diagnosed by abdominal ultrasound. Clinical, anthropometric (body mass index, waist circumference) and biochemical variables were measured.Results Of the 188 women, 73 (38.8%) had NAFLD. Blood pressure, waist circumference, body mass index, LDL cholesterol, triglycerides and glucose were significantly higher in NAFLD patients when compared with women without NAFLD (control group) (p < 0.05). HOMA-IR values indicated insulin resistance only in the NAFLD group (6.1 +/- 4.6 vs. 2.4 +/- 1.4 in control group, p < 0.05). Metabolic syndrome was detected in 93.1% of the women affected by NAFLD, and 46.1% of the control group (p < 0.05). In multivariate analysis, adjusted for age and weight, the variables considered at risk for the development of NAFLD, were: high waist circumference (odds ratio (OR) 1.07, 95% confidence interval (CI) 1.01-1.13), insulin resistance (OR 3.81, 95% CI 2.01-7.13), and presence of metabolic syndrome (OR 8.68, 95% CI 3.3-24.1).Conclusion NAFLD showed a high prevalence among postmenopausal women. The presence of metabolic syndrome, abdominal obesity and IR were indicators of risk for the development of NAFLD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD), especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set) and high volume of strength training (HVST; n = 11, 3 sets), or control group (n = 12). Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein) pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001), maximal dynamic strength (p < 0.001), and muscle volume (p = 0.048). Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047). Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group. Copyright (C) 2014, The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier (Singapore) Pte Ltd. All rights reserved.
Resumo:
The present study investigates the effects of vitamin D on muscle function in postmenopausal women. It has been shown that vitamin D supplementation in postmenopausal women with hypovitaminosis D provides significant protective factor against sarcopenia, with significant increases in muscle strength and control of progressive loss of lean mass. We aimed to evaluate the effect of supplementation of vitamin D (VITD) alone on muscle function in younger postmenopausal women. In this double-blind, placebo-controlled clinical trial, 160 Brazilian postmenopausal women were randomized into two groups: VITD group consisting of patients receiving vitamin D3 1000 IU/day orally (n = 80) or placebo group (n = 80). Women with amenorrhea for more than 12 months and age 50-65 years, with a history of falls (previous 12 months), were included. The intervention time was 9 months, with assessments at two points, start and end. Lean mass was estimated by total-body dual-energy X-ray absorptiometry (DXA) and muscle strength by handgrip strength and chair rising test. The plasma concentrations of 25-hydroxyvitamin D [25(OH)D] were measured by high-performance liquid chromatography (HPLC). Statistical analysis was by intention to treat (ITT), using ANOVA, Student's t test, and Tukey's test. After 9 months, average values of 25(OH)D increased from 15.0 ± 7.5 to 27.5 ± 10.4 ng/ml (+45.4 %) in the VITD group and decreased from 16.9 ± 6.7 to 13.8 ± 6.0 ng/ml (-18.5 %) in the placebo group (p < 0.001). In the VITD group, there was significant increase in muscle strength (+25.3 %) of the lower limbs by chair rising test (p = 0.036). In women in the placebo group, there was considerable loss (-6.8 %) in the lean mass (p = 0.030). The supplementation of vitamin D alone in postmenopausal women provided significant protective factor against the occurrence of sarcopenia, with significant increases in muscle strength and control of progressive loss of lean mass.
Resumo:
The aim of this study was to verify the effects of aerobic and combined training on the body composition and lipid profile of obese postmenopausal women and to analyze which of these models is more effective after equalizing the training load. Sixty five postmenopausal women (age=61.0±6.3 years) were divided into three groups: Aerobic Training (AT,n= 15), Combined Training (CT,[strength+aerobic],n=32) and control group (CG,n=18). Their body composition: upper body fat (TF), fat mass (FM), percentage of fat mass and fat free mass (FFM) were estimated by DXA. The lipid profile, total cholesterol, HDL-cholesterol and LDL-cholesterol were assessed. There was a statistically significant difference in the TF (AT= -4.4 %, CT= -4.4%, and CG= 1.0%, p= 0.001) and FFM (AT= 1.7%, CT= 2.6%, and CG= -1.4%, p= 0.0001) between the experimental and the control groups. Regarding the percentage of body fat, there was a statistically significant difference only between the CT and CG groups (AT= -2.8%, CT= -3.9% and CG= 0.31%, p= 0.004). When training loads were equalized, the aerobic and combined training decreased core fat and increased fat-free mass, but only the combined training potentiated a reduction in percentage of body fat in obese postmenopausal women after the training program. HDL-c levels increased in the combined group and the chol/HDL ratio (atherogenic index) decreased in the aerobic group, however, there were no significant differences between the intervention programs. Taken together, both the exercise training programs were effective for improving body composition and inducing an anti-atherogenic status.
Resumo:
Background: Walking speed seems to be related to aerobic capacity, lower limb strength, and functional mobility, however it is not clear whether there is a direct relationship between improvement in muscle strength and gait performance in early postmenopausal women. Objective: To evaluate the effect of muscle strengthening exercises on the performance of the 6-minute walk test in women within 5 years of menopause. Methods: The women were randomized into control group (n=31), which performed no exercise, and exercise group (n=27), which performed muscle strengthening exercises. The exercises were performed twice a week for 3 months. The exercise protocol consisted of warm-up, stretching, and strengthening of the quadriceps, hamstring, calf, tibialis anterior, gluteus maximus, and abdominal muscles, followed by relaxation. Muscular strength training started with 60% of 1MR (2 series of 10-15 repetitions), reaching 85% until the end of the 3-month period (4 series of 6 repetitions each). Results: The between-group comparisons pre- and post-intervention did not show any difference in distance walked, heart rate or blood pressure (p>0.05), but showed differences in muscle strength post-intervention, with the exercise group showing greater strength (p<0.05). In the within-group comparison, there were differences in final heart rate and quadriceps and hamstring strength pre- and post-intervention in the exercise group (p<0.05). Conclusion: The results suggest that muscle strengthening of the lower limbs did not improve performance in the 6-minute walk test in this population of postmenopausal women. Trial registration ACTRN12609001053213.
Resumo:
Background. The link between endogenous estrogen, coronary artery disease (CAD), and death in postmenopausal women is uncertain. We analyzed the association between death and blood levels of estrone in postmenopausal women with known coronary artery disease (CAD) or with a high-risk factor score for CAD. Methods. 251 postmenopausal women age 50-90 years not on estrogen therapy. Fasting blood for estrone and heart disease risk factors were collected at baseline. Women were grouped according to their estrone levels (<15 and >= 15 pg/mL). Fatal events were recorded after 5.8 perpendicular to 1.4 years of followup. Results. The Kaplan-Meier survival curve showed a significant trend (P = 0.039) of greater all-cause mortality in women with low estrone levels (< 15 pg/mL). Cox multivariate regression analysis model adjusted for body mass index, diabetes, dyslipidemia, family history, and estrone showed estrone (OR = 0.45; P = 0.038) as the only independent variable for all-cause mortality. Multivariate regression model adjusted for age, body mass index, hypertension, diabetes, dyslipidemia, family history, and estrone showed that only age (OR = 1.06; P = 0.017) was an independent predictor of all-cause mortality. Conclusions. Postmenopausal women with known CAD or with a high-risk factor score for CAD and low estrone levels (< 15 pg/mL) had increased all-cause mortality.
Resumo:
Objective: Obesity is a major public health problem leading to, among other things, reduced functional capacity. Moreover, obesity-related declines in functional capacity may be compounded by the detrimental consequences of menopause. The aim of this study was to understand the potential effects of excess body mass on measures of functional capacity in postmenopausal women. Methods: Forty-five postmenopausal women aged 50 to 60 years were divided into two groups according to body mass index (BMI): obese (BMI, >= 30 kg/m(2); n = 19) and nonobese (BMI, 18.5-29.9 kg/m(2); n = 26). To determine clinical characteristics, body composition, bone mineral density, and maximal exercise testing was performed, and a 3-day dietary record was estimated. To assess quadriceps function, isokinetic exercise testing at 60 degrees per second (quadriceps strength) and at 300 degrees per second (quadriceps fatigue) was performed. Results: The absolute value of the peak torque was not significantly different between the groups; however, when the data were normalized by body mass and lean mass, significantly lower values were observed for obese women compared with those in the nonobese group (128% +/- 25% vs 155% +/- 24% and 224% +/- 38% vs 257% +/- 47%, P < 0.05). The fatigue index did not show any significant difference for either group; however, when the data were normalized by the body mass and lean mass, significantly lower values were observed for obese women (69% +/- 16% vs 93% +/- 18% and 120% +/- 25% vs. 135% +/- 23%, P < 0.01). Conclusions: Our results show that despite reduced muscle force, the combination of obesity and postmenopause may be associated with greater resistance to muscle fatigue.