907 resultados para Positioning precision
Resumo:
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong learning process; in fact, this is also the main objective of education. However, some barriers to the development of a LO economy, such as the granularity and editability of LO, must be overcome. Furthermore, some enablers, such as learning design generation and standards usage, must be promoted in order to enhance LO economy. For this article, we introduced the integration of distributed learning object repositories (DLOR) as sources of LO that could be placed in adaptive learning designs to assist teachers’ design work. Two main issues presented as a result: how to access distributed LO, and where to place the LO in the learning design. To address these issues, we introduced two processes: LORSE, a distributed LO searching process, and LOOK, a micro context-based positioning process, respectively. Using these processes, the teachers were able to reuse LO from different sources to semi-automatically generate an adaptive learning design without leaving their virtual environment. A layered evaluation yielded good results for the process of placing learning objects from controlled learning object repositories into a learning design, and permitting educators to define different open issues that must be covered when they use uncontrolled learning object repositories for this purpose. We verified the satisfaction users had with our solution
Resumo:
OBJECTIVE. The purpose of our study was to evaluate hepatic, gastrointestinal, and cardiac toxicity after PRECISION transarterial chemoembolization (TACE) with drug-eluting beads (DEB) versus conventional TACE with doxorubicin in the treatment of intermediate-stage hepatocellular carcinoma (HCC).SUBJECTS AND METHODS. Two hundred twelve patients (185 men and 27 women; mean age, 67 years) were randomized to TACE with DEB or conventional TACE. The majority of patients (67% in both groups) presented in a more advanced stage. Safety was measured by rate of adverse events (Southwest Oncology Group criteria) and changes in laboratory parameters. Cardiotoxicity was assessed with left ventricular ejection fraction (LVEF) mainly on MRI or echocardiography.RESULTS. The mean maximum postchemoembolization alanine transaminase increase in the DEB group was 50% less than in the conventional TACE group (p < 0.001) and 41% less in respect to aspartate transaminase (p < 0.001). End-of-study values returned to approximately baseline levels but with greater variability in conventional TACE patients. Treatment-emergent adverse events in the hepatobiliary system organ class occurred in 16.1% of DEB group patients compared with 25% of conventional TACE patients. There were fewer liver toxicity events in the DEB group. There was a small but statistically significant difference in mean change from baseline in LVEF between the two groups of 4 percentage points for the conventional TACE group (95% CI, 0.71-7.3; p = 0.018).CONCLUSION. PRECISION TACE with DEB loaded with doxorubicin offers a safe therapy option for intermediate-stage HCC, even in patients with more advanced liver disease.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
The aim of this study was to identify predictors of intentional use of the HIV risk reduction practices of serosorting, strategic positioning, and withdrawal before ejaculation during unprotected anal intercourse (UAI) with casual partners. A cross-sectional survey pertaining to the Swiss HIV behavioral surveillance system, using an anonymous self-administered questionnaire, was conducted in 2007 in a self-selected sample of men having sex with other men (MSM). Analysis was restricted to participants with UAI with casual partner(s) (N = 410). Logistic regression was used to estimate factors associated with intentional use of serosorting, strategic positioning, and withdrawal before ejaculation. In the previous 12 months, 71% of participants reported having UAI with a casual partner of different or unknown HIV-status. Of these, 47% reported practicing withdrawal, 38% serosorting, and 25% strategic positioning. In the 319 participants with known HIV-status, serosorting was associated with frequent Internet use to find partners (OR = 2.32), STI (OR = 2.07), and HIV testing in the past 12 months (OR = 1.81). Strategic positioning was associated with HIV-status (OR = 0.13) and having UAI with a partner of different or unknown HIV-status (OR = 3.57). Withdrawal was more frequently practiced by HIV-negative participants or participants reporting high numbers of sexual partners (OR = 2.48) and having UAI with a partner of unknown or different serostatus (OR = 2.08). Risk reduction practices are widely used by MSM, each practice having its own specificities. Further research is needed to determine the contextual factors surrounding harm reduction practices, particularly the strategic or opportunistic nature of their use.
Resumo:
PURPOSE: The objective was to explore whether a satellite-based navigation system, global positioning system used in differential mode (DGPS), could accurately assess the speed of running in humans. METHODS: A subject was equipped with a portable GPS receptor coupled to a receiver for differential corrections, while running outdoors on a straight asphalt road at 27 different speeds. Actual speed (reference method) was assessed by chronometry. RESULTS: The accuracy of speed prediction had a standard deviation (SD) of 0.08 km x h(-1) for walking, 0.11 km x h(-1) for running, yielding a coefficient of variation (SD/mean) of 1.38% and 0.82%, respectively. There was a highly significant linear relationship between actual and DGPS speed assessment (r2 = 0.999) with little bias in the prediction equation, because the slope of the regression line was close to unity (0.997). CONCLUSION: the DGPS technique appears to be a valid and inconspicuous tool for "on line" monitoring of the speed of displacement of individuals located on any field on earth, for prolonged periods of time and unlimited distance, but only in specific environmental conditions ("open sky"). Furthermore, the accuracy of speed assessment using the differential GPS mode was improved by a factor of 10 as compared to non-differential GPS.
Resumo:
Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5-20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters--such as walking speed, step length and step frequency--that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness--combined with a usability which requires further improvement--remain obstacles to the full development of the GPS technology in human applications.
Resumo:
Résumé : Le positionnement correct du fuseau mitotique est crucial pour les divisions cellulaires asymétriques, car il gouverne le contrôle spatial de la division cellulaire et assure la ségrégation adéquate des déterminants cellulaires. Malgré leur importance, les mécanismes contrôlant le positionnement du fuseau mitotique sont encore mal compris. Chez l'embryon au stade une-cellule du nématode Caenorhabditis elegans, le fuseau mitotique est positionné de manière asymétrique durant l'anaphase grâce à l'action de générateurs de force situés au cortex cellulaire, et dont la nature était jusqu'alors indéterminée. Ces générateurs de force corticaux exercent une traction sur les microtubules astraux et sont dépendants de deux protéines Gα et de leurs protéines associées. Cette thèse traite de la nature de la machinerie responsable pour la génération des forces de tractions, ainsi que de son lien avec les protéines Gα et associées. Nous avons combiné des expériences de coupure par faisceau laser du fuseau mitotique avec le contrôle temporel de l'inactivation de gènes ou de l'exposition à des produits pharmacologiques. De cette manière, nous avons établi que la dynéine, un moteur se déplaçant vers l'extrémité négative des microtubules, ainsi que la dynamique des microtubules, sont toutes deux requises pour la génération efficace des forces de tractions. Nous avons démontré que les protéines Gα et leurs protéines associées GPR-1/2 et LIN-5 interagissent in vivo avec LIS-1, un composant du complexe de la dynéine. De plus, nous avons découvert que les protéines Gα, GPR-1/2 et LIN-5 promeuvent la présence du complexe de la dynéine au cortex cellulaire. Nos résultats suggèrent un mécanisme par lequel les protéines Gα permettent le recrutement cortical de GPR-1/2 et LIN-5, assurant ainsi la présence de la dynéine au cortex. Conjointement avec la dynamique des microtubules, ce mécanisme permet la génération des forces de tractions afin d'obtenir une division cellulaire correcte. Comme les mécanismes contrôlant le positionnement du fuseau mitotique et les divisions cellulaires asymétriques sont conservés au cours de l'évolution, nous espérons que les mécanismes élucidés par ce travail sont d'importance générale pour la génération de la diversité cellulaire durant le développement. De plus, ces mécanismes pourraient être applicables à d'autres divisions asymétriques, comme celle des cellules souches, dont le disfonctionnement peut entraîner la génération de cellules cancéreuses. Abstract : Proper spindle positioning is crucial for asymmetric cell division, because it controls spatial aspects of cell division and the correct inheritance of cell-fate determinants. However, the mechanisms governing spindle positioning remain incompletely understood. In the Caenorhabditis elegans one-cell stage embryo, the spindle becomes asymmetrically positioned during anaphase through the action of as-yet unidentified cortical force generators that pull on astral microtubules and that depend on two Gα proteins and associated proteins. This thesis addresses the nature of the force generation machinery and the link with the Gα and associated proteins. By performing spindle-severing experiments following temporally restricted gene inactivation and drug exposure, we established that microtubule dynamics and the minus-end directed motor dynein are both required for generating efficient pulling forces. We discovered that the Gα proteins and their associated proteins GPR-1/2 and LIN-5 interact in vivo with LIS-1, a component of the dynein complex. Moreover, we uncovered that LIN-5, GPR-1/2 and the Gα proteins promote the presence of the dynein complex at the cell cortex. Our findings suggest a mechanism by which the Gα proteins enable GPR-1/2 and LIN-5 recruitment to the cortex, thus ensuring the presence of cortical dynein. Together with microtubule dynamics, this allows pulling forces to be exerted and proper cell division to be achieved. Because the mechanisms of spindle positioning and asymmetric cell division are conserved across evolution, we expect the underlying mechanism uncovered here to be of broad significance for the generation of cell diversity during development. Moreover, this mechanism could be relevant for other asymmetric cell divisions, such as stem cell divisions, whose dysfunction may lead to the generation of cancer cells.
Resumo:
Coarse-grained gabbros from two different localities in the Gets nappe (Upper Prealps) have been dated by U-Pb and Ar-40/Ar-39 isotopic analyses. Zircons from both gabbros gave identical concordant U-Pb ages of 166 +/- 1 Ma (Fig. 4). Amphibole from one of them gave an Ar-40/Ar-39 plateau age of 165.9 +/- 2.2 Ma (Fig. 5). This concordance implies that 166 +/- 1 Ma is the age of magmatic crystallization of these gabbros. The Gets wildflysch with its mafic and ultramafic lenses is an ophiolitic melange, that we infer to come from a proximal part of the accretionary prism at the foot of the active SE margin of the Piemont ocean. In this position we can expect to find remnants of the oldest parts of the Piemont oceanic crust. These are the first high-precision dates using modern techniques from an Alpine ophiolite and are in excellent agreement with the following: 1) The few, somewhat younger, reliable ages on ophiolites from the probable continuation of the Piemont basin into the Apennines and Corsica; 2) Recent data on the age of the first supra-ophiolitic sediments (Late Bathonian to Early Callovian radiolarites); 3) The structural and stratigraphic evolution of the Brianconnais (s.s.) domain, the future NW margin of the Piemont ocean. We note a remarkable coincidence, in Late Bajocian time, between: (A) the end of tensile fracturing in the Brianconnais continental crust; (B) the beginning of its subsidence; (C) the age of the Gets ophiolites. This coincidence is consistent with an ocean opening mechanism based on a combination of subhorizontal extension and thermally driven vertical movements of the lithosphere.
Resumo:
InAlAs/InGaAs/InP based high electron mobility transistor devices have been structurally and electrically characterized, using transmission electron microscopy and Raman spectroscopy and measuring Hall mobilities. The InGaAs lattice matched channels, with an In molar fraction of 53%, grown at temperatures lower than 530¿°C exhibit alloy decomposition driving an anisotropic InGaAs surface roughness oriented along [1math0]. Conversely, lattice mismatched channels with an In molar fraction of 75% do not present this lateral decomposition but a strain induced roughness, with higher strength as the channel growth temperature increases beyond 490¿°C. In both cases the presence of the roughness implies low and anisotropic Hall mobilities of the two dimensional electron gas.
Resumo:
Map units directly related to properties of soil-landscape are generated by local soil classes. Therefore to take into consideration the knowledge of farmers is essential to automate the procedure. The aim of this study was to map local soil classes by computer-assisted cartography (CAC), using several combinations of topographic properties produced by GIS (digital elevation model, aspect, slope, and profile curvature). A decision tree was used to find the number of topographic properties required for digital cartography of the local soil classes. The maps produced were evaluated based on the attributes of map quality defined as precision and accuracy of the CAC-based maps. The evaluation was carried out in Central Mexico using three maps of local soil classes with contrasting landscape and climatic conditions (desert, temperate, and tropical). In the three areas the precision (56 %) of the CAC maps based on elevation as topographical feature was higher than when based on slope, aspect and profile curvature. The accuracy of the maps (boundary locations) was however low (33 %), in other words, further research is required to improve this indicator.
Resumo:
Zielsetzung: Vergleich von Drug Eluting Bead (DEB)-TACE mit konventioneller TACE bei der Behandlung von ,,intermediate stage-HCC bei Patienten mit Zirrhose. Material und Methodik: 212 Patienten (185 ♂, 27 ♀; mittleres Alter, 67 Jahre) mit Child-Pugh A oder B Leberzirrhose und großem und/oder multinodulärem, irresektablen HCC wurden randomisiert, um das Therapieansprechen nach der Behandlung mit DEB (DC Bead; Biocompatibles, UK) beladen mit Doxorubicin oder konventioneller TACE mit Doxorubicin zu vergleichen. Die Randomisierung wurde nach Child-Pugh Status (A oder B), Performance Status (ECOG 0 oder 1), bilobärer Erkrankung (ja/nein) und frühere kurative Behandlung (ja/nein) stratifiziert. Der primäre Studienendpunkt war das 6-Monats-Tumoransprechen. Eine unabhängige verblindete MRT-Studie wurde durchgeführt, um das Tumoransprechen nach den RECIST Kriterien zu beurteilen. Ergebnisse: DEB-TACE mit Doxorubicin zeigte eine höhere Rate an komplettem Tumoransprechen, objektivem Ansprechen und Tumorkontrolle im Vergleich zur konventionellen TACE (27% vs 22%; 52% vs 44%; and 63% vs 52%; P>0.05). Patienten mit Child-Pugh B Zirrhose, ECOG 1 Performance Status, bilobärer Erkrankung und Rezidiven nach kurativer Behandlung zeigte einen signifikanten Anstieg des objektiven Ansprechens (p = 0.038) im Vergleich zur Kontrollgruppe. Bei Patienten, die mit DEB-TACE behandelt wurden, konnte eine deutliche Reduktion der gravierenden Lebertoxizität erreicht werden. Die Doxorubicin-Nebenwirkungsrate war in der DEB-TACE Gruppe deutlich geringer (p = 0.0001) als in der konventionellen TACEGruppe. Schlussfolgerung: DEB-TACE mit Doxorubicin ist sicher und effektiv in der Behandlung von ,,intermediate-stage HCC und bietet einen signifikanten Vorteil bei Patienten mit fortgeschrittener Erkrankung.