986 resultados para Portland Harbor
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This report describes results from a study evaluating the use of stringless paving using a combination of global positioning and laser technologies. CMI and Geologic Computer Systems developed this technology and successfully implemented it on construction earthmoving and grading projects. Concrete paving is a new area for considering this technology. Fred Carlson Co. agreed to test the stringless paving technology on two challenging concrete paving projects located in Washington County, Iowa. The evaluation was conducted on two paving projects in Washington County, Iowa, during the summer of 2003. The research team from Iowa State University monitored the guidance and elevation conformance to the original design. They employed a combination of physical depth checks, surface location and elevation surveys, concrete yield checks, and physical survey of the control stakes and string line elevations. A final check on profile of the pavement surface was accomplished by the use of the Iowa Department of Transportation Light Weight Surface Analyzer (LISA). Due to the speed of paving and the rapid changes in terrain, the laser technology was abandoned for this project. Total control of the guidance and elevation controls on the slip-form paver were moved from string line to global positioning systems (GPS). The evaluation was a success, and the results indicate that GPS control is feasible and approaching the desired goals of guidance and profile control with the use of three dimensional design models. Further enhancements are needed in the physical features of the slipform paver oil system controls and in the computer program for controlling elevation.
Resumo:
None provided.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This letter has been prepared as a consultation to EPA regarding the third five year review of the Northwestern States Portland Cement Company Site, located North of Mason City, Iowa in Cerro Gordo County to provide an evaluation of the public health status of the site.
Resumo:
The coarse aggregates used for Portland Cement concrete in southwest Iowa have exhibited a poor serviceability. This early failure is attributed to a characteristic commonly referred as "D" cracking. "D" line cracking is a discolored area of concrete caused by many fine, parallel hairline cracks. "D" line cracking is primarily caused by the movement of water in and through coarse aggregate with a unique pore structure. The presence of the water in the aggregates at the time of freezing causes the "D" cracking to occur and early failure. By making the pore structure less permeable to moisture, it is thought the durability factor of the concrete should increase. By drying the aggregate before mixing and then mixing with the cement, the particles of cement should enter the outer pore structure, and upon hydration make the pore structure less permeable to moisture.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
In the present work four different analytical methodologies were studied for the determination of iron and titanium in Portland cement. The cement samples were dissolved with hot HCl and HF, being compared Fe and Ti concentrations through four analytical methods: molecular absorption spectrophotometry using the reagents 1,2-hydroxybenzene-3,5-disulfonic acid (Tiron) and the 5-chloro-salicylic acid (CSA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and flame atomic absorption spectrophotometry (FAAS). In the spectrophotometric determinations were studied pH conditions, reagents addition order, interferences, amount of reagents, linear range and stability of the system. In the techniques of ICP-AES and FAAS were studied the best lines, interferences, sensibility and linear range. The obtained results were compared and the agreement was evaluated among the methods for the determination of the metals of interest.
Resumo:
An alternative application of the humid sludge from the Passaúna WTP, located in Curitiba's metropolitan area, is proposed for concrete structures, partially replacing aggregates and cement. For the investigation, a reference concrete and four concrete mixtures with sludge were produced, and from these, two mixtures, containing 4% and 8% of sludge (m/m), were analyzed by different techniques: X ray fluorescence, X ray diffraction, thermo-gravimetric analysis, physicochemical analysis, compressive strength, etc. The properties were evaluated and the results indicate that the mixtures can be applied in different situations as cast structures for construction of concrete walls. Mixtures with more than 4% of sludge are restricted to applications where the workability of the concrete is not required, such as for residential pavements, sidewalks and stepping floors.
Resumo:
Physicochemical and mechanical techniques were carried out to characterize three concrete tyre-rubber waste dosages such as 5, 10 and 15%, w/w. The elastomeric material was identified as styrene-butadiene rubber (SBR). It was observed that the growing SBR content in the mixture decreased the concrete performance. The best results were presented by 5% w/w tyre-rubber waste concrete sample. This composition was tested at Mourão hydroelectric powerplant spillway as repairing material.
Resumo:
Last decade Brazilian rivers experimented progressive biofouling of Limnoperna fortunei communities and Cordylophora caspia hydroids. The microhabitat is so favorable that in around 1.5 years L. fortunei increased from 0.39 to nearby 149,000 units/m². Ten Portland cement mortar samples were produced with 1: 3.5: 0.4 dosages and installed for 1 year at Salto Caxias Brazilian Power Plant reservoir in 0.5 m and 1.0 m deep to investigate the biofouling influence on hydraulic civil structures. SEM, EDS, visual investigation and XRF results indicate none direct chemical interrelationships between L. fortunei and the mortar samples. However C. caspia diminished the mortar surface resistance and caused cement paste leaching.
Resumo:
The sheave leather was subjected to chemical treatment in an attempt to immobilize chromium ion in a matrix of cement. Cementitious pastes were obtained by adding different proportions of waste treated solutions (5 and 10% compared to the cement mass) and the pH and setting time (hardening) were measured. Aiming to check the leather influence in Portland cement pastes, the phases formation were observed by X-ray diffraction (XRD). The results showed that the pretreatment was effective for the waste dissolution and the pH of treated waste chemical solutions did not influence significantly the characteristics of cement paste, with a slight increase in setting time results.
Resumo:
Photocatalytic materials can minimize atmospheric pollution by decomposing certain organic and inorganic pollutants using sunlight as an energy source. In this paper, the development of a methodology to measure the photocatalytic potential of mortar containing TiO2 nanoparticles is reported. The results indicate that up to 40% of NOx can be degraded by Portland cement mortar containing 30-50% of TiO2, which validates the method developed for evaluating the photocatalytic potential of materials.