977 resultados para Polylactic acid Membranes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied 'food grade' sialyloligosaccharides (SOS) as anti-adhesive drugs or receptor analogues, since the terminal sialic acid residue has already been shown to contribute significantly to the adhesion and pathogenesis of the Vibrio cholerae toxin (Ctx). GM1-oligosaccharide (GM1-OS) was immobilized into a supporting POPC lipid bilayer onto a surface plasmon resonance (SPR) chip, and the interaction between uninhibited Ctx and GM1-OS-POPC was measured. SOS inhibited 94.7% of the Ctx binding to GM1-OS-POPC at 10 mg/mL. The SOS EC50 value of 5.521 mg/mL is high compared with 0.2811 mu g/mL (182.5 pM or 1.825 x 10(-10) M) for GM1-OS. The commercially available sialyloligosaccharide (SOS) mixture Sunsial E (R) is impure, containing one monosialylated and two disialylated oligosaccharides in the ratio 9.6%. 6.5% and 17.5%, respectively, and 66.4% protein. However, these inexpensive food-grade molecules are derived from egg yolk and could be used to fortify conventional food additives, by way of emulsifiers, sweeteners and/or preservatives. The work further supports our hypothesis that SOS could be a promising natural anti-adhesive glycomimetic against Ctx and prevent subsequent onset of disease. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatty acid composition of immune cells appears to contribute to variations of cell function. The independent and combined effects of a single session of exercise (SSE) and glutamine supplementation (GS) on neutrophil fatty acid composition were investigated. Compared to control (no treatment given - i.e. neither SSE or GS), single session of exercise decreased myristic, palmitic and eicosapentaenoic (EPA) acids, and increased lauric, oleic, linoleic, arachidonic (AA) and docosahexaenoic (DHA) acids whereas glutamine supplementation combined with SSE (GS+SSE) increased oleic acid. Polyunsaturated/saturated fatty acid ratio and Unsaturation index were higher in neutrophils from the SSE and GS groups as compared with control. These findings support the proposition that SSE and GS may modulate neutrophil function through alterations in fatty acid composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a simple and efficient strategy to fabricate enzymatic devices based on the deposition of glucose oxidase on aligned and highly oriented CoNiMo metallic nanowires. CoNiMo nanowires with an average diameter of 200 nm and length of 50 mu m were electrodeposited on Au-covered alumina substrates via electrodeposition, using alumina membranes as templates. Enzyme-modified electrodes were fabricated via enzyme immobilization using a cross-linker. To minimize nonspecific reactions in the presence of interfering agents, a permselective membrane composed of poly(vinylsulfonic acid) and polyamidoamine dendrimer was deposited via electrostatic interaction. The formation of hydrogen peroxide as a product of the enzymatic reaction was monitored at low overpotential, 0.0 V (vs Ag/AgCl). The detection limit was estimated at 22 mu M under an applied potential of 0.0 V. The apparent Michaelis-Menten constant determined from the Lineweaver-Burke plot was 2 mM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C18H36O2) has been determined at a resolution of 1.8 angstrom. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in croup I/II PLA(2)s and to the possible interactions of Lys49-PLA(2)s with target membranes. (c) 2004 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lys49-Phospholipase A(2) (Lys49-PLA(2) - EC 3.1.1.4) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. Both MjTX-II from Bothrops moojeni and BthTX-I from Bothrops jararacussu are dimeric in solution and in the crystalline states, and a model for the Ca2+-independent membrane damaging mechanism has been suggested in which flexibility at the dimer interface region pert-nits quaternary structural transitions between open and closed membrane bound dimer conformations which results in the perturbation of membrane phospholipids and disruption of the bilayer structure [1]. With the aim of gaining insights into the structural determinants involved in protein/lipid association, we report here the crystallization and preliminary X-ray analysis of the (i) MjTX-II/SDS complex at a resolution of 2.78Angstrom, (ii) MjTX-II/STE complex at a resolution of 1.8 Angstrom and (W) BthTX-I/DMPC complex at 2.72Angstrom. These complexes were crystallized by the hanging drop vapour-diffusion technique in (i) HEPES buffer (pH 7.5) 1.8M ammonium sulfate with 2% (w/v) polyethyleneglycol 400, in (ii) 0.6-0.8 M sodium citrate as the precipitant (pH 6.0-6.5) and in (iii) sodium citrate buffer (pH 5.8) and PEG 4000 and 20% isopropanol, respectively. Single crystals of these complexes have been obtained and X-ray diffraction data have been collected at room temperature using a R-AXIS IV imaging plate system and graphite monochromated Cu Kalpha X-ray radiation generated by a Rigaku RU300 rotating anode generator for (i) and (W) and using using a Synchrotron Radiation Source (Laboratorio Nacional de Luz Sincrotron, LNLS, Campinas, Brazil) for (ii).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid phosphatase activity was investigated ultrastructurally in Malpighian tubules of Triatoma infestans. Enzyme activity was demonstrated in laminated 'concretions' (distal cells) and in typical lysosomes, as well as in basal plasmalemma infoldings and basement membranes (especially in distal cells). This activity was assumed to be related to the excretory functions carried out mostly by the distal cells. Heterochromatin-nucleolus functional relationships involving RNA transcription may promote the nuclear reaction verified in the proximal cells and in some distal cells. A lead phosphate precipitate appeared free in the cytoplasm encircling the nuclei and was assumed to be a contamination from the nuclear precipitates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative damage to biological membranes has been reported as a cause of alterations in many different diseases. We had previously reported lipid peroxidation in the kainic acid model of temporal epilepsy. In this study we evaluated earlier and later modifications in the lipid composition after status epileticus induced by kainic acid. Lipid composition was determined by thin-layer chromatography, in the cortex and hippocampus 12-14 h, 7-8, 75-80, or 140-150 days after the end of status epileticus. In the hippocampus there was a significant change in the lipid protein ratio after status epileticus and this was accompanied by an alteration in lipid composition in all tested times. These results suggested that lipid peroxidation induced by kainic acid could be accompanied by chronic changes in the lipid composition that could be related to the development of seizures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osmosedimentation is a new membrane-assisted separation technique, based on the rapid approach to sedimentation equilibrium when macromolecular solutions are contained within dialysis cells, in contact with solvent via a permselective membrane. Cellulose acetate membranes, cast from ternary solvent (acetone, acetic acid, water) solutions are suitable for osmosedimentation of proteins at low (2000 rpm) centrifugation speeds. Solute retention is improved when acetone-rich casting solutions are used. These membranes were examined by electron and optical microscopy, showing considerable morphological changes in the membrane support layer as the casting solution composition is changed. © 1986.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates gel polymer electrolytes (GPEs) based on sodium alginate plasticized with glycerol containing either CH3COOH or LiClO4. The membranes showed ionic conductivity results of 3.1 x 10(-4) S/cm for the samples with LiClO4 and 8.7x10(-5) S/cm for the samples with CH3COOH at room temperature. The samples also showed thermal stability up to 160 degrees C, transparency of up to 90%, surface uniformity and adhesion to glass and steel. Moreover, Dynamic Mechanical Analysis revealed two relaxations for both samples and the Ea values were between 18 and 36 kJ/mol. All the results obtained indicate that alginate-based GPEs can be used as electrolytes in electrochemical devices.