977 resultados para Polyketide synthase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leucine and valine are formed in a common pathway from pyruvate in which the first intermediate is 2-acetolactate. In some bacteria, this compound also has a catabolic fate as the starting point for the butanediol fermentation. The enzyme (EC 4.1.3.18) that forms 2-acetolactate is known as either acetohydroxyacid synthase (AHAS) or acetolactate synthase (ALS), with the latter name preferred for the catabolic enzyme. A significant difference between AHAS and ALS is that the former requires FAD for catalytic activity, although the reason for this requirement is not well understood. Both enzymes require the cofactor thiamine diphosphate. Here, the crystallization and preliminary X-ray diffraction analysis of the Klebsiella pneumoniae ALS is reported. Data to 2.6 Angstrom resolution have been collected at 100 K using a rotating-anode generator and an R-AXIS IV++ detector. Crystals have unit-cell parameters a = 137.4, b = 143.9, c = 134.4 Angstrom, alpha = 90, beta = 108.4, gamma = 90degrees and belong to space group C2. Preliminary analysis indicates that there are four monomers located in each asymmetric unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested preciously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macropodid herpesvirus 1 (MaHV-1) is an unclassified alphaherpesvirus linked with the fatal infections of kangaroos and other marsupials. During the characterisation of the internal repeat region of MaHV-1, an open reading frame (ORF) encoding for thymidylate synthase (TS) gene was identified and completely sequenced. Southern blot analysis confirmed the presence of two copies of the TS gene in the MaHV-1 genome as expected. Computer analysis of the TS ORF showed it was 948 nucleotides in length. A putative polyadenylation signal was identified 17-22 bp inside the ORF implying a minimal or absent 3' untranslated region. The predicted polypeptide was 316 amino acid residues in length and contained the highly conserved motifs for folate binding and F-dUMP binding, typical of all TS enzymes. Interestingly, MaHV-1 TS polypeptide had highest similarity to the human TS polypeptide (81%) compared to the TS polypeptides of other herpesviruses (72-75%). Immediately upstream of the TS gene, a second ORF of 510 bp, encoding a polypeptide with 170 amino acid residues, was identified. The carboxyl domain of this MaHV-1 polypeptide shared 68% similarity to a 59 amino acid motif of human herpesvirus 1 ICP34.5, identifying it as the MaHV-1 ICP34.5 homologue. This is the first report of a herpesvirus that encodes for both TS and ICP34.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC 4.1.3.18) catalyzes the first step in branchedchain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 Angstrom resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K-i of 3.3 nM blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyses the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides, which act as potent and specific inhibitors. Mutants of the enzyme have been identified that are resistant to particular herbicides. However, the selectivity of these mutants towards various sulfonylureas and imidazolinones has not been determined systematically. Now that the structure of the yeast enzyme is known, both in the absence and presence of a bound herbicide, a detailed understanding of the molecular interactions between the enzyme and its inhibitors becomes possible. Here we construct 10 active mutants of yeast AHAS, purify the enzymes and determine their sensitivity to six sulfonylureas and three imidazolinones. An additional three active mutants were constructed with a view to increasing imidazolinone sensitivity. These three variants were purified and tested for their sensitivity to the imidazolinones only. Substantial differences are observed in the sensitivity of the 13 mutants to the various inhibitors and these differences are interpreted in terms of the structure of the herbicide-binding site on the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymidylate synthase, as a rate-limiting step in DNA synthesis, catalyses the conversion of dUMP into dTMP using 5,10-methylenotetrahydrofolate as the methyl donor. Two polymorphisms have been described in this gene: a repeat polymorphism in the 5' promoter enhancer region (3R versus 2R) and a 6 bp deletion in the 3' unstranslated region. Both of these may affect protein levels. The present case control study was aimed at investigating the influence of these two polymorphisms on the development of colorectal cancer (CRC), as well as their potential interaction with folate, vitamin B6 and vitamin B12 intake. A total of 196 cases and 200 controls, matched for age and sex distribution, were included in the study. No association was found between CRC and the 28 bp repeat polymorphism, but it was observed that individuals with the 6 bp/del and del/del genotypes had a significantly lower risk of developing the disease (OR=0.47; 95% CI 0.30-0.72). A combined genotype (2R/2R; 6 bp/del+del/del) was also found, which was associated with an even lower risk of developing of the disease (OR=0.42; 95% CI 0.26-0.69). No significant interaction between these polymorphisms and vitamin intake was observed. These results indicate for the first time that the 6 bp/del allele might be a protective factor in the development of CRC, independent of the intake of methyl group donors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.