968 resultados para Point-set surface
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken
Resumo:
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.
Resumo:
Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas sensors and should also provide varistor properties modifying the TiO2 surface. Therefore, a theoretical investigation has been carried out characterizing the effect of SnO2 on TiO2 addition on the electronic structure by means of ab initio SCF-LCAO calculations using all electrons. In order to take into account the finite size of the cluster, we have used the point charge model for the (TiO2)(15) cluster to study the effect on electronic structure of doping the TiO2 (110) Surface. The contracted basis set for titanium (4322/42/3), oxygen (33/3) and tin (43333/4333/43) atoms were used. The charge distributions, dipole moments, and density of states of doping TiO2 and vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Soil surface roughness is known to influence water infiltration, runoff and erosion. Soil surface roughness changes with management and weather and its mathematical description still remains an important issue. The main objective of this study was to investigate the effect of tillage on the two fractal indices, fractal dimension, D, and crossover length, 1, currently used in characterizing soil surface microrelief. The statistical index random roughness, RR, was also assessed. Field experiments were done on an Alfisol located at Rio Grande do Sul State (Brazil). Two tillage treatments (conventional versus direct drilling) were tested. The soil surface microrelief was assessed by point elevation measurements in 16 plots for each treatment. The sampling scheme was a square grid with 20 x 20 mm between point spacing and the plot size was 280 x 280 mm, so that each data set consisted of 225 individual elevation points. All indices were calculated after trend removal, both by slope correction, i.e., oriented microrelief, and by slope plus tillage marks correction, i.e., random microrelief. The implemented algorithm for estimating D and 1 consisted in evaluating the roughness around the local root mean square deviation (RMS) of the point elevation values. Irrespective of tillage treatment and detrending procedure, fractal behavior extended only over a bounded range of scales, from 40 to 100 mm, due to the experimental setup. In these conditions, assessing fractal indices was not always straightforward. The statistical index RR and the fractal index I were significantly different between tillage treatments for oriented and random surface conditions. D values of random soil surfaces were not affected by tillage treatment, whereas D values of oriented microrelief were significantly lower in the direct drilled plots. Removal of tillage marks trend resulted in a significant increase in D values. Within each tillage treatment, 1 and D were significantly correlated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Theoretical analysis based on the Hartree-Fock method were performed in order to study the stoichiometric TiO(2) (110) surface and the vanadium substituted system. The Pople with polarization 3-21G* basis set level was used. The TiO(2) (110) surface was modeled using a (TiO(2))(15) cluster model. In order to take into account the finite size of the cluster, we have studied two different models: the point charge and the hydrogen saturated methodologies. The charge values used in the point charge calculations were optimized. The density of states, orbital self-consistend field (SCF) energies, and Mulliken charge values were analyzed. The method and model's dependence on the analyzed results are discussed. The theoretical results are compared with available experimental data. (C) 2001 John Wiley & Sons, Inc.
Resumo:
This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases.
Resumo:
This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
Resumo:
Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.
Resumo:
Since the Moon is not shielded by a global magnetic field or by an atmosphere, solar wind plasma impinges onto the lunar surface almost unhindered. Until recently, it was assumed that almost all of the impinging solar wind ions are absorbed by the surface. However, recent Interstellar Boundary Explorer, Chandrayaan-1, and Kaguya observations showed that the interaction process between the solar wind ions and the lunar surface is more complex than previously assumed. In contrast to previous assumptions, a large fraction of the impinging solar wind ions is backscattered as energetic neutral atoms. Using the complete Chandrayaan-1 Energetic Neutral Analyzer data set, we compute a global solar wind reflection ratio of 0.16 ± 0.05 from the lunar surface. Since these backscattered neutral particles are not affected by any electric or magnetic fields, each particle's point of origin on the lunar surface can be determined in a straight-forward manner allowing us to create energetic neutral atom maps of the lunar surface. The energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer cover ˜89% of the lunar surface, whereby the lunar farside is almost completely covered. We analyzed all available energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer to create the first global energetic neutral hydrogen maps of the lunar surface.
Resumo:
Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.
Resumo:
The sensitivity of the gas flow field to changes in different initial conditions has been studied for the case of a highly simplified cometary nucleus model. The nucleus model simulated a homogeneously outgassing sphere with a more active ring around an axis of symmetry. The varied initial conditions were the number density of the homogeneous region, the surface temperature, and the composition of the flow (varying amounts of H2O and CO2) from the active ring. The sensitivity analysis was performed using the Polynomial Chaos Expansion (PCE) method. Direct Simulation Monte Carlo (DSMC) was used for the flow, thereby allowing strong deviations from local thermal equilibrium. The PCE approach can be used to produce a sensitivity analysis with only four runs per modified input parameter and allows one to study and quantify non-linear responses of measurable parameters to linear changes in the input over a wide range. Hence the PCE allows one to obtain a functional relationship between the flow field properties at every point in the inner coma and the input conditions. It is for example shown that the velocity and the temperature of the background gas are not simply linear functions of the initial number density at the source. As probably expected, the main influence on the resulting flow field parameter is the corresponding initial parameter (i.e. the initial number density determines the background number density, the temperature of the surface determines the flow field temperature, etc.). However, the velocity of the flow field is also influenced by the surface temperature while the number density is not sensitive to the surface temperature at all in our model set-up. Another example is the change in the composition of the flow over the active area. Such changes can be seen in the velocity but again not in the number density. Although this study uses only a simple test case, we suggest that the approach, when applied to a real case in 3D, should assist in identifying the sensitivity of gas parameters measured in situ by, for example, the Rosetta spacecraft to the surface boundary conditions and vice versa.