960 resultados para Plasma-Renin Activity
Resumo:
Angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and diuretics all cause reactive rises in plasma renin concentration, but particularly high levels have been reported with aliskiren. This prompted speculation that blockade of plasma renin activity with aliskiren could be overwhelmed, leading to paradoxical increases in blood pressure. This meta-analysis of data from 4877 patients from 8 randomized, double-blind, placebo- and/or active-controlled trials examined this hypothesis. The analysis focused on the incidence of paradoxical blood pressure increases above predefined thresholds, after > or =4 weeks of treatment with 300 mg of aliskiren, angiotensin receptor blockers (300 mg of irbesartan, 100 mg of losartan, or 320 mg of valsartan), 10 mg of ramipril, 25 mg of hydrochlorothiazide, or placebo. There were no significant differences in the frequency of increases in systolic (>10 mm Hg; P=0.30) or diastolic (>5 mm Hg; P=0.65) pressure among those treated with aliskiren (3.9% and 3.1%, respectively), angiotensin receptor blockers (4.0% and 3.7%), ramipril (5.7% and 2.6%), or hydrochlorothiazide (4.4% and 2.7%). Increases in blood pressure were considerably more frequent in the placebo group (12.6% and 11.4%; P<0.001). None of the 536 patients with plasma renin activity data who received 300 mg of aliskiren exhibited an increase in systolic pressure >10 mm Hg that was associated with an increase in plasma renin activity >0.1 ng/mL per hour. In conclusion, the incidence of blood pressure increases with aliskiren was similar to that during treatment with other antihypertensive drugs. Blood pressure rises on aliskiren treatment were not associated with increases in plasma renin activity. This meta-analysis found no evidence that aliskiren uniquely causes paradoxical rises in blood pressure.
Resumo:
The effect of vasopressin released during Finnish sauna on blood pressure, heart rate and skin blood flow was investigated in 12 healthy volunteers. Exposure to the hot air decrease body weight by 0.6 to 1.25 kg (mean = 0.8 kg, P less than 0.001). One hour after the end of the sauna sessions, plasma vasopressin was higher (1.7 +/- 0.2 pg/ml, P less than 0.01 mean +/- SEM) than before the sauna (1.0 +/- 0.1 pg/ml). No simultaneous change in plasma osmolality, plasma renin activity, plasma norepinephrine, epinephrine, cortisol, aldosterone, beta-endorphin and metenkephalin levels was observed. Despite the slight sauna-induced elevation in circulating vasopressin, intravenous injection of the specific vascular vasopressin antagonist d(CH2)5Tyr(Me)AVP (5 micrograms/kg) 1 h after the sauna had no effect on blood pressure, heart rate or skin blood flow. These data suggest that vasopressin released into the circulation during a sauna session reaches concentrations which are not high enough to interfere directly with vascular tone.
Resumo:
BACKGROUND: Hypertension and associated disorders are major risk factors for cardiovascular disease. The Lyon hypertensive rat (LH) is a genetically hypertensive strain that exhibits spontaneous and salt-sensitive hypertension, exaggerated proteinuria, high body weight, hyperlipidemia, and elevated insulin-to-glucose ratio. Previous genetic mapping identified quantitative trait loci (QTLs) influencing blood pressure (BP) on rat chromosome 13 (RNO13) in several models of hypertension. METHODS: To study the effects of a single chromosome on the mapped traits, we generated consomic strains by substituting LH RNO13 with that of the normotensive Brown Norway (BN) strain (LH-13BN) and reciprocal consomics by substituting a BN RNO13 with that of LH (BN-13LH). These reciprocal consomic strains, as well as the two parental strains were characterized for BP, metabolic and morphological parameters. RESULTS: Compared with LH parents, LH-13BN rats showed decreased mean BP (up to -24 mmHg on 2% NaCl in the drinking water), urine proteins and lipids, and increased body weight. Differences between BN-13LH and BN rats were much smaller than those observed between LH-13BN and LH rats, demonstrating the effects of the highly resistant BN genome background. Plasma renin activity was not affected by the substitution of RNO13, despite the significant BP differences. CONCLUSION: The present work demonstrates that RNO13 is a determinant of BP, proteinuria, and plasma lipids in the LH rat. The distinct phenotypic differences between the consomic LH-13BN and the LH make it a powerful model to determine genes and pathways leading to these risk factors for cardiovascular and renal disease.
Resumo:
Objective: Previous studies reported on the association of left ventricular mass index (LVMI) with urinary sodium or with circulating or urinary aldosterone.We investigated the independent associations of LVMI with the urinary excretion of both sodium and aldosterone. Design and method: We randomly recruited 317 untreated subjects from a White population (45.1%women; mean age 48.2 years).Measurements included echocardiographic left ventricular (LV) properties, the 24 h urinary excretion of sodium and aldosterone, plasma renin activity (PRA), and proximal (RNaprox) and distal (RNadist) renal sodium reabsorption, assessed fromthe endogenous lithium clearance. Inmultivariable-adjusted models,we expressed changes in LVMI per 1 SD increase in the explanatory variables, while accounting for sex, age, systolic blood pressure and the waist-to-hip ratio. Results: LVMI increased independentlywith the urinary excretion of both sodium (+2.48 g/m2; P=0.005) and aldosterone (+2.63 g/m2; P=0.004). Higher sodium excretion was associated with increased mean wall thickness (MWT: +0.126 mm, P=0.054), but with no change in LV end-diastolic diameter (LVID: +0.12mm, P=0.64). In contrast, higher aldosterone excretion was associated with higher LVID (+0.54 mm; P=0.017), but with no change in MWT (+0.070mm; P=0.28).Higher RNadistwas associatedwith lower relativewall thickness (−0.81×10−2, P=0.017), because of opposite trends in LVID(+0.33 mm; P=0.13) and MWT (−0.130mm; P=0.040). LVMI was not associated with PRA or RNaprox. Conclusions: LVMI independently increased with both urinary sodium and aldosterone excretion. IncreasedMWT explained the association of LVMI with urinary sodium and increased LVID the association of LVMI with urinary aldosterone.
Resumo:
In nine normal volunteers, a series of five venous blood samples was obtained before and up to 24 h after converting enzyme inhibition by a single oral dose of enalapril or lisinopril. Plasma renin activity and blood angiotensin I were measured. A close linear relationship was found between the increase in plasma renin activity and the increase in blood angiotensin I. The linear correlation between plasma renin activity and blood angiotensin I remained after converting enzyme inhibition. Thus, the rise in angiotensin I after inhibition of the conversion of angiotensin I to angiotensin II is due to an enhanced release of renin rather than to accumulation of angiotensin I.
Resumo:
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.
Resumo:
The relative importance of molecular biology in clinical practice is often underestimated. However, numerous procedures in clinical diagnosis and new therapeutic drugs have resulted from basic molecular research. Furthermore, understanding of the physiological and physiopathological mechanisms underlying several human diseases has been improved by the results of basic molecular research. For example, cloning of the gene encoding leptin has provided spectacular insights into the understanding of the mechanisms involved in the control of food intake and body weight maintenance in man. In cystic fibrosis, the cloning and identification of several mutations in the gene encoding the chloride channel transmembrane regulator (CFTR) have resolved several important issues in clinical practice: cystic fibrosis constitutes a molecular defect of a single gene. There is a strong correlation between the clinical manifestations or the severity of the disease (phenotype) with the type of mutations present in the CFTR gene (genotype). More recently, identification of mutations in the gene encoding a subunit of the renal sodium channel in the Liddle syndrome has provided important insight into the physiopathological understanding of mechanisms involved in this form of hereditary hypertension. Salt retention and secondary high blood pressure are the result of constitutive activation of the renal sodium channel by mutations in the gene encoding the renal sodium channel. It is speculated that less severe mutations in this channel could result in a less severe form of hypertension which may correspond to patients suffering from high blood pressure with low plasma renin activity. Several tools, most notably PCR, are derived from molecular research and are used in everyday practice, i.e. in prenatal diagnosis and in the diagnosis of several infectious diseases including tuberculosis and hepatitis. Finally, the production of recombinant proteins at lower cost and with fewer side effects is used in everyday clinical practice. Gene therapy remains an extraordinary challenge in correcting severe hereditary or acquired diseases. The use of genetically modified animal cell lines producing growth factors, insulin or erythropoetin, which are subsequently encapsulated and transferred to man, represents an attractive approach for gene therapy.
Resumo:
Two doses of synthetic atrial natriuretic peptide (0.5 and 5.0 micrograms/min) and its vehicle were infused intravenously for 4 hours in eight salt-loaded normal volunteers, and the effect on blood pressure, heart rate, renal hemodynamics, solute excretion, and secretion of vasoactive hormones was studied. The 0.5 micrograms/min infusion did not alter blood pressure or heart rate, whereas the 5.0 micrograms/min infusion significantly reduced the mean pressure by 20/9 mm Hg after 2.5 to 3 hours and increased the heart rate slightly. Inulin clearance was not significantly changed, but the mean p-aminohippurate clearance fell by 13 and 32% with the lower and higher doses, respectively. Urinary excretion of sodium and chloride increased slightly with the lower dose. With the higher dose, a marked increase in urinary excretion of sodium, chloride, and calcium was observed, reaching a peak during the second hour of the infusion. Potassium and phosphate excretion did not change significantly. A brisk increase in urine flow rate and fractional water excretion was seen only during the first hour of the high-dose infusion. Signs and symptoms of hypotension were observed in two subjects. No change in plasma renin activity, angiotensin II, or aldosterone was observed during either infusion, but a marked increase occurred after discontinuation of the high-dose infusion. In conclusion, the 5 micrograms/min infusion induced a transient diuretic effect, delayed maximal natriuretic activity, and a late fall in blood pressure, with no change in inulin clearance but a dose-related decrease in p-aminohippurate clearance. Despite large amounts of sodium excreted and blood pressure reduction, no counterregulatory changes were observed in the renin-angiotensin-aldosterone system or plasma vasopressin levels during the infusion.
Resumo:
OBJECTIVES: Prorenin can be detected in plasma of hypertensive patients. If detected in patients with primary aldosteronism could implicate prorenin in the development of primary aldosteronism. To address this issue, we measured the plasma prorenin levels in primary aldosteronism patients, the expression of the prorenin receptor (PRR) in the normal human adrenocortical zona glomerulosa and aldosterone-producing adenoma (APA), and we investigated the functional effects of PRR activation in human adrenocortical cells. METHOD: Plasma renin activity, aldosterone, and active and total trypsin-activated renin were measured in primary aldosteronism patients, essential hypertensive patients, and healthy individuals, and then prorenin levels were calculated. Localization and functional role of PRR were investigated in human and rat tissues, and aldosterone-producing cells. RESULTS: Primary aldosteronism patients had detectable plasma levels of prorenin. Using digital-droplet real-time PCR, we found a high PRR-to-porphobilinogen deaminase ratio in both the normal adrenal cortex and APAs. Marked expression of the PRR gene and protein was also found in HAC15 cells. Immunoblotting, confocal, and immunogold electron microscopy demonstrated PRR at the cell membrane and intracellularly. Renin and prorenin significantly triggered both CYP11B2 expression (aldosterone synthase) and ERK1/2 phosphorylation, but only CYP11B2 transcription was prevented by aliskiren. CONCLUSION: The presence of detectable plasma prorenin in primary aldosteronism patients, and the high expression of PRR in the normal human adrenal cortex, APA tissue, CD56+ aldosterone-producing cells, along with activation of CYP11B2 synthesis and ERK1/2 phosphorylation, suggest that the circulating and locally produced prorenin may contribute to the development or maintenance of human primary aldosteronism.
Resumo:
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Resumo:
The present study evaluated the short-term effects of percutaneous 17ß-estradiol on blood pressure, metabolic profile and hormonal levels in postmenopausal women with systemic arterial hypertension. After a wash-out period of 15 days, 10 hypertensive patients were treated with guanabenz acetate to control blood pressure, followed by 17ß-estradiol in the form of hydroalcoholic gel administered for 21 of 28 days of each cycle, for 3 cycles. Patients were evaluated before, during and 2 months after estrogen administration. Systolic and diastolic blood pressure or heart rate did not present any significant change in any patient when compared to those periods with the antihypertensive drug only (pretreatment period and 60 days after estrogen therapy was discontinued). Plasma biological markers of hepatic estrogenic action (plasma renin activity, antithrombin III, triglycerides, total cholesterol and lipoproteins) also remained unchanged during the study. Hormone treatment was effective, as indicated by the relief of menopausal symptoms, a decrease in FSH levels (73.48 ± 27.21 to 35.09 ± 20.44 IU/l, P<0.05), and an increase in estradiol levels (15.06 ± 8.76 to 78.7 ± 44.6 pg/ml, P<0.05). There was no effect on LH (18.0 ± 9.5 to 14.05 ± 8.28 IU/l). Hormone levels returned to previous values after estrogen treatment was discontinued. The data indicate that short-term percutaneous 17ß-estradiol replacement therapy, at the dose used, seems to be a safe hormone therapy for hypertensive menopausal women. Nevertheless, a controlled, prospective, randomized clinical assay with a larger number of subjects is needed to definitely establish both the beneficial and harmful effects of hormone replacement therapy in hypertensive women
Resumo:
Although a slightly elevated office blood pressure (BP) has been reported in several studies, little is known about the prolonged resting blood pressure, heart rate (HR) and baroreflex sensitivity (BRS) of prehypertensive subjects with a family history of hypertension. Office blood pressure, prolonged resting (1 h) BP and HR were measured in 25 young normotensives with a positive family history of hypertension (FH+) and 25 young normotensives with a negative family history of hypertension (FH-), matched for age, sex, and body mass index. After BP and HR measurements, blood samples were collected for the determination of norepinephrine, plasma renin activity and aldosterone levels, and baroreflex sensitivity was then tested. Casual BP, prolonged resting BP and heart rate were significantly higher in the FH+ group (119.9 ± 11.7/78.5 ± 8.6 mmHg, 137.3 ± 12.3/74.4 ± 7.9 mmHg, 68.5 ± 8.4 bpm) compared to the FH- group (112.9 ± 11.4/71.2 ± 8.3 mmHg, 128.0 ± 11.8/66.5 ± 7.4 mmHg, 62.1 ± 6.0 bpm). Plasma norepinephrine level was significantly higher in the FH+ group (220.1 ± 104.5 pg/ml) than in the FH- group (169.1 ± 63.3 pg/ml). Baroreflex sensitivity to tachycardia (0.7 ± 0.3 vs 1.0 ± 0.5 bpm/mmHg) was depressed in the FH+ group (P<0.05). The FH+ group exhibited higher casual blood pressure, prolonged resting blood pressure, heart rate and plasma norepinephrine levels than the FH- group (P<0.05), suggesting an increased sympathetic tone in these subjects. The reflex tachycardia was depressed in the FH+ group.
Resumo:
It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.
Resumo:
Aldosterone, the major circulating mineralocorticoid, participates in blood volume and serum potassium homeostasis. Primary aldosteronism is a disorder characterised by hypertension and hypokalaemia due to autonomous aldosterone secretion from the adrenocortical zona glomerulosa. Improved screening techniques, particularly application of the plasma aldosterone:plasma renin activity ratio, have led to a suggestion that primary aldosteronism may be more common than previously appreciated among adults with hypertension. Glucocorticoid-remediable aldosteronism (GRA) was the first described familial form of hyperaldosteronism. The disorder is characterised by aldosterone secretory function regulated chronically by ACTH. Hence, aldosterone hypersecretion can be suppressed, on a sustained basis, by exogenous glucocorticoids such as dexamethasone in physiologic range doses. This autosomal dominant disorder has been shown to be caused by a hybrid gene mutation formed by a crossover of genetic material between the ACTH-responsive regulatory portion of the 11ß-hydroxylase (CYP11B1) gene and the coding region of the aldosterone synthase (CYP11B2) gene. Familial hyperaldosteronism type II (FH-II), so named to distinguish the disorder from GRA or familial hyperaldosteronism type I (FH-I), is characterised by autosomal dominant inheritance of autonomous aldosterone hypersecretion which is not suppressible by dexamethasone. Linkage analysis in a single large kindred, and direct mutation screening, has shown that this disorder is unrelated to mutations in the genes for aldosterone synthase or the angiotensin II receptor. The precise genetic cause of FH-II remains to be elucidated.
Resumo:
Incidentally discovered adrenal masses, or adrenal incidentalomas, have become a common clinical problem owing to wide application of radiologic imaging techniques. This definition encompasses a heterogeneous spectrum of pathologic entities, including primary adrenocortical and medullary tumors, benign or malignant lesions, hormonally active or inactive lesions, metastases, and infections. Once an adrenal mass is detected, the clinician needs to address two crucial questions: is the mass malignant, and is it hormonally active? This article provides an overview of the diagnostic clinical approach and management of the adrenal incidentaloma. Mass size is the most reliable variable to distinguish benign and malignant adrenal masses. Adrenalectomy should be recommended for masses greater than 4.0 cm because of the increased risk of malignancy. Adrenal scintigraphy has proved useful in discriminating between benign and malignant lesions. Finally, fine-needle aspiration biopsy is an important tool in the evaluation of oncological patients and it may be useful in establishing the presence of metastatic disease. The majority of adrenal incidentalomas are non-hypersecretory cortical adenomas but an endocrine evaluation can lead to the identification of a significant number of cases with subclinical Cushing's syndrome (5-15%), pheochromocytoma (1.5-13%) and aldosteronoma (0-7%). The first step of hormonal screening should include an overnight low dose dexamethasone suppression test, the measure of urinary catecholamines or metanephrines, serum potassium and, in hypertensive patients, upright plasma aldosterone/plasma renin activity ratio. Dehydroepiandrosterone sulfate measurement may show evidence of adrenal androgen excess.