993 resultados para Plasma diagnostic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The involvement of oxidatively modified low density lipoprotein (LDL) in the development of CHD is widely described. We have produced two antibodies, recognizing the lipid oxidation product malondialdehyde (MDA) on whole LDL or ApoB-100. The antibodies were utilized in the development of an ELISA for quantitation of MDA-LDL in human plasma. Intra- and inter-assay coefficients of variation (% CV) were measured as 4.8 and 7.7%, respectively, and sensitivity of the assay as 0.04 μg/ml MDA-LDL. Recovery of standard MDA-LDL from native LDL was 102%, indicating the ELISA to be specific with no interference from other biomolecules. Further validation of the ELISA was carried out against two established methods for measurement of lipid peroxidation products, MDA by HPLC and F2-isoprostanes by GC-MS. Results indicated that MDA-LDL is formed at a later stage of oxidation than either MDA or F2- isoprostanes. In vivo analysis demonstrated that the ELISA was able to determine steady-state concentrations of plasma MDA-LDL (an end marker of lipid peroxidation). A reference range of 34.3 ± 8.8 μg/ml MDA-LDL was established for healthy individuals. Further, the ELISA was used to show significantly increased plasma MDA-LDL levels in subjects with confirmed ischemic heart disease, and could therefore possibly be of benefit as a diagnostic tool for assessing CHD risk. © 2003 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (∼210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum oxide (A1203, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of A1203 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for A1203 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed A1203-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried A1203 (A-SD), A1203 blended with 4wt.% CNT (A4C-B), composite spray dried A1203-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8CSD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20 % (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43 % (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The A1203/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the A1203/CNTinterface. Contrasting storage modulus was obtained by nanoindentation (~ 210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize non-thermal atmospheric pressure plasmas experimentally, a large variety of methods and techniques is available, each having its own specific possibilities and limitations. A rewarding method to investigate these plasma sources is laser Thomson scattering. However, that is challenging. Non-thermal atmospheric pressure plasmas (gas temperatures close to room temperature and electron temperatures of a few eV) have usually small dimensions (below 1 mm) and a low degree of ionization (below 10-4). Here an overview is presented of how Thomson scattering can be applied to such plasmas and used to measure directly spatially and temporally resolved the electron density and energy distribution. A general description of the scattering of photons and the guidelines for an experimental setup of this active diagnostic are provided. Special attention is given to the design concepts required to achieve the maximum signal photon flux with a minimum of unwanted signals. Recent results from the literature are also presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasilia, Faculdade de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active screen (AS) is an advanced technology for plasma surface engineering, which offers some advantages over conventional direct current (DC) plasma treatments. Such surface defects and process instabilities as arcing, edge and hollow cathode effects can be minimised or completely eliminated by the AS technique, with consequent improvements in surface quality and material properties. However, the lack of information and thorough understanding of the process mechanisms generate scepticism in industrial practitioners. In this project, AISI 316 specimens were plasma carburised and plasma nitrided at low temperature in AS and DC furnaces, and the treated samples were comparatively analysed. Two diagnostic techniques were used to study the plasma: optical fibre assisted optical emission spectroscopy, and a planar electrostatic probe. Optimum windows of treatment conditions for AS plasma nitriding and AS plasma carburising of austenitic stainless steel were identified and some evidence was obtained on the working principles of AS furnaces. These include the sputtering of material from the cathodic mesh and its deposition on the worktable, the generation of additional active species, and the electrostatic confinement of the plasma within the operative volume of the furnace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- This paper presents a validation proposal for development of diagnostic and prognostic algorithms for SF6 puffer circuit-breakers reproduced from actual site waveforms. The re-ignition/restriking rates are duplicated in given circuits and the cumulative energy dissipated in interrupters by the restriking currents. The targeted objective is to provide a simulated database for diagnosis of re-ignition/restrikes relating to the phase to earth voltage and the number of re-ignition/restrikes as well as estimating the remaining life of SF6 circuit-breakers. The model-based diagnosis of a tool will be useful in monitoring re-ignition/restrikes as well as predicting a nozzle’s lifetime. This will help ATP users with practical study cases and component data compilation for shunt reactor switching and capacitor switching. This method can be easily applied with different data for the different dielectric curves of circuit breakers and networks. This paper presents modelling details and some of the available cases, required project support, the validation proposal, the specific plan for implementation and the propsed main contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.