1000 resultados para Planktonic
Resumo:
Surface water conditions at the Integrated Ocean Drilling Program (IODP) Site U1314 (Southern Gardar Drift, 56° 21.8' N, 27° 53.3' W, 2820 m depth) were inferred using planktic foraminifer assemblages between Marine Isotope Stage (MIS) 19 and 11 (ca. 800-400 ka). Factor analysis of the planktic foraminifer assemblages suggests that the assemblage was controlled by three factors. The first factor (which explained 49% of the variance) is dominated by transitional and subpolar species and points to warm and salty surface water conditions (Atlantic water). The second factor (37%) is dominated by Neogloboquadrina pachyderma sin and has been associated with the presence of cold and low saline surface waters (Arctic water). Finally, the third factor (9%), linked to a significant presence of Turborotalita quinqueloba, reflects the closeness of the Arctic front (the boundary between Atlantic and Arctic water). The position of the Arctic and Polar fronts has been estimated across the glacial-interglacial cycles studied according to planktic foraminifer abundances from Site U1314 (and their factor analysis) combined with a synthesis of planktic foraminifer and diatom data from other North Atlantic sites. Regarding at the migrations of the Arctic front and the surface water masses distribution across each climatic cycle we determined five phases of development. Furthermore, deep ocean circulation changes observed in glacial-interglacial cycles have been associated with each phase. The high abundance of transitional-subpolar foraminifers (above 65% at Site U1314) during the early interglacial phase indicated that the Arctic front position and surface water masses distribution were similar to present conditions. During the late interglacial phase, N. pachyderma sin and T. quinqueloba slightly increased indicating that winter sea ice slightly expanded southwestwards whereas the ice volume remained stable or was still decreasing. N. pachyderma sin increased rapidly (above 65% at Site U1314) at the first phase of glacial periods indicating the expansion of the Arctic waters in the western subpolar North Atlantic. During the second phase of glacial periods the transitional-subpolar assemblage throve again in the central subpolar North Atlantic associated with strong warming events that followed ice-rafting events. The third phase of glacial periods corresponds to full glacial conditions in which N. pachyderma sin dominated the assemblage for the whole subpolar North Atlantic. This division in phases may be applied to the last four climatic cycles.
Resumo:
In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.
Resumo:
The development of widespread anoxic conditions in the deep oceans is evidenced by the accumulation and preservation of organic-carbon-rich sediments, but its precise cause remains controversial. The two most popular hypotheses involve (1) circulation-induced increased stratification resulting in reduced oxygenation of deep waters or (2) enhanced productivity in the surface ocean, increasing the raining down of organic matter and overwhelming the oxic remineralization potential of the deep ocean. In the periodic development of deep-water anoxia in the Pliocene-Pleistocene Mediterranean Sea, increased riverine runoff has been implicated both as a source for nutrients that fuel enhanced photic-zone productivity and a source of a less dense freshwater cap leading to reduced circulation, basin-wide stagnation, and deep-water oxygen starvation. Monsoon-driven increases in Nile River discharge and increased regional precipitation due to enhanced westerly activity-two mechanisms that represent fundamentally different climatic driving forces-have both been suggested as causes of the altered freshwater balance. Here we present data that confirm a distinctive neodymium (Nd) isotope signature for the Nile River relative to the Eastern Mediterranean-providing a new tracer of enhanced Nile outflow into the Mediterranean in the past. We further present Nd isotope data for planktonic foraminifera that suggest a clear increase in Nile discharge during the central intense period of two recent anoxic events. Our data also suggest, however, that other regional freshwater sources were more important at the beginning and end of the anoxic events. Taken at face value, the data appear to imply a temporal link between peaks in Nile discharge and enhanced westerly activity.
Resumo:
Qualitative and quantitative analyses of planktonic foraminiferal assemblages from Deep Sea Drilling Project site 532 shed light on hydrographic changes over the Walvis Ridge during the past 500,000 years. From changes in distribution of foraminiferal assemblages, two major hydrographic regimes (coastal and geostrophic branches of the Benguela Current and the Angola Current) can be distinguished at site 532. It is suggested that the hydrographic situation on the northeastern Walvis Ridge was characterized by intensified upwelling and a westward expansion of the coastal upwelling cells during several global cooling pulses. During glacial stages 2-4, the middle part of stage 6, sporadically from the lower stage 8 through upper stage 10, and during stage 12, site 532 was located beneath the coastal branch of the Benguela Current because faunal distribution patterns indicate intensified upwelling. The Angola Current probably intruded the area of study during the lower stages 5, sporadically 6-8, and 11, as documented by the increased abundance of Neogloboquadrina dutertrei.