964 resultados para Piecewise Polynomial Approximation
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.
Resumo:
O presente trabalho objetiva avaliar o desempenho do MECID (Método dos Elementos de Contorno com Interpolação Direta) para resolver o termo integral referente à inércia na Equação de Helmholtz e, deste modo, permitir a modelagem do Problema de Autovalor assim como calcular as frequências naturais, comparando-o com os resultados obtidos pelo MEF (Método dos Elementos Finitos), gerado pela Formulação Clássica de Galerkin. Em primeira instância, serão abordados alguns problemas governados pela equação de Poisson, possibilitando iniciar a comparação de desempenho entre os métodos numéricos aqui abordados. Os problemas resolvidos se aplicam em diferentes e importantes áreas da engenharia, como na transmissão de calor, no eletromagnetismo e em problemas elásticos particulares. Em termos numéricos, sabe-se das dificuldades existentes na aproximação precisa de distribuições mais complexas de cargas, fontes ou sorvedouros no interior do domínio para qualquer técnica de contorno. No entanto, este trabalho mostra que, apesar de tais dificuldades, o desempenho do Método dos Elementos de Contorno é superior, tanto no cálculo da variável básica, quanto na sua derivada. Para tanto, são resolvidos problemas bidimensionais referentes a membranas elásticas, esforços em barras devido ao peso próprio e problemas de determinação de frequências naturais em problemas acústicos em domínios fechados, dentre outros apresentados, utilizando malhas com diferentes graus de refinamento, além de elementos lineares com funções de bases radiais para o MECID e funções base de interpolação polinomial de grau (um) para o MEF. São geradas curvas de desempenho através do cálculo do erro médio percentual para cada malha, demonstrando a convergência e a precisão de cada método. Os resultados também são comparados com as soluções analíticas, quando disponíveis, para cada exemplo resolvido neste trabalho.
Resumo:
In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
The Schwinger proper-time method is an effective calculation method, explicitly gauge-invariant and nonperturbative. We make use of this method to investigate the radiatively induced Lorentz- and CPT-violating effects in quantum electrodynamics when an axial-vector interaction term is introduced in the fermionic sector. The induced Lorentz- and CPT-violating Chern-Simons term coincides with the one obtained using a covariant derivative expansion but differs from the result usually obtained in other regularization schemes. A possible ambiguity in the approach is also discussed. (C) 2001 Published by Elsevier Science B.V.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
Consider the problem of determining a task-toprocessor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct kinds of processors. We propose a polynomialtime approximation scheme (PTAS) for this problem. It offers the following guarantee: for a given task set and a given platform, if there exists a feasible task-to-processor assignment, then given an input parameter, ϵ, our PTAS succeeds, in polynomial time, in finding such a feasible task-to-processor assignment on a platform in which each processor is 1+3ϵ times faster. In the simulations, our PTAS outperforms the state-of-the-art PTAS [1] and also for the vast majority of task sets, it requires significantly smaller processor speedup than (its upper bound of) 1+3ϵ for successfully determining a feasible task-to-processor assignment.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
ABSTRACTINTRODUCTION:Cryptococcosis is an invasive disease acquired by inhalation of infectious propagules from the environment. Currently, compulsory notification of the spread of this disease is not required in Colombia. However, reporting of human immunodeficiency virus (HIV)/acquired immune deficiency syndrome cases to the National Surveillance System has suggested that there is a growing population at risk of contracting cryptococcosis. Few studies have described the occurrence of cryptococcosis in Colombia. Therefore, in this study, we examined the pathology of this disease in Atlántico, Colombia and determined the distributions of Cryptococcus neoformans and Cryptococcus gattii in the environment.METHODS:Clinical samples/isolates were gathered from cases of cryptococcosis previously diagnosed at health institutions in Atlántico, and surveys were completed by clinicians. The environmental study considered 32 sampling points and three tree species, i.e., Quickstick ( Gliricidia sepium ), Almond ( Terminalia catappa ), and Pink trumpet ( Tabebuia rosea ). Environmental and clinical samples/isolates were analyzed for phenotypic and genotypic confirmation.RESULTS:From 1997-2014, 41 cases of cryptococcosis were reported. The mean patient age was 40.5 years (range: 18-63 years); 76% were men, and 78% were HIV positive. Isolation was possible in 38 cases ( C. neoformans , molecular type VNI in 37 cases and C. gattii , molecular type VGI in one case). In 2012-2014, 2,068 environmental samples were analyzed with a positivity of 0.4% ( C. neoformans , molecular type VNI) in Almond and Pink trumpet trees.CONCLUSIONS:Cryptococcus neoformans , molecular type VNI had a higher prevalence than C. gattii and was associated with human exposure and the pathogenesis of cryptococcosis in this geographical region.