947 resultados para Phytoplankton. Cyanobacteria. Functional groups of phytoplankton. Index assembly. Cyanotoxins
Resumo:
Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4).Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.
Resumo:
Nitric oxide synthase (NOS) is strongly and transiently expressed in the developing heart but its function is not well documented. This work examined the role, either protective or detrimental, that endogenous and exogenous NO could play in the functioning of the embryonic heart submitted to hypoxia and reoxygenation. Spontaneously beating hearts isolated from 4-day-old chick embryos were either homogenized to determine basal inducible NOS (iNOS) expression and activity or submitted to 30 min anoxia followed by 100 min reoxygenation. The chrono-, dromo- and inotropic responses to anoxia/reoxygenation were determined in the presence of NOS substrate (L-arginine 10 mM), NOS inhibitor L-NIO (1-5 mM), or NO donor (DETA NONOate 10-100 microM). Myocardial iNOS was detectable by immunoblotting and its activity was specifically decreased by 53% in the presence of 5 mM L-NIO. L-Arginine, L-NIO and DETA NONOate at 10 microM had no significant effect on the investigated functional parameters during anoxia/reoxygenation. However, irrespective of anoxia/reoxygenation, DETA NONOate at 100 microM decreased ventricular shortening velocity by about 70%, and reduced atrio-ventricular propagation by 23%. None of the used drugs affected atrial activity and hearts of all experimental groups fully recovered at the end of reoxygenation. These findings indicate that (1) by contrast with adult heart, endogenously released NO plays a minor role in the early response of the embryonic heart to reoxygenation, (2) exogenous NO has to be provided at high concentration to delay postanoxic functional recovery, and (3) sinoatrial pacemaker cells are the less responsive to NO.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Recent studies in mouse models have suggested that genetic transfer of tumor antigen-specific high affinity T cell receptors (TCR) into host lymphocytes could be a viable strategy for the rapid induction of tumor-specific immunity. A previously proposed approach for the isolation of such TCRs consists in circumventing tolerance to self-restricting HLA/peptide complexes by deriving them from PMBCs of allogenic donors. Towards this aim, we used fluorescent HLA-A2 class-I/peptide soluble multimers to isolate A2-restricted CD8+ T cells specific for a previously described Melan-A peptide enhanced analog (Melan-A 26-35 A27L) from an HLA-A*0201 (A2) negative donor. We isolated two distinct groups of Melan-A 26-35 A27L-specific clones. Clones from the first group recognized the analog peptide with high avidity but showed very low recognition of Melan-A parental peptides. In contrast, clones from the second group efficiently recognized Melan-A parental peptides. Surprisingly however, most clones recognized not only A2+ Melan-A+ targets, but also A2+ Melan-A- targets suggesting that they can also recognize endogenous peptides other than Melan-A. In addition, one clone showed full cross-recognition of an antigenically unrelated peptide. Together, our data show that HLA-A2/peptide multimers can be successfully used for the isolation of allorestricted CD8+ T cells reactive with tumor antigen-derived peptides. However, as the cross-reactivity of these apparently peptide-specific allorestricted TCRs is presently unpredictable, a careful in vitro analysis of their reactivity to the host's normal cells is recommended.
Resumo:
Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor control.
Resumo:
The extra session of the 1840 legislative assembly listing all of the territorial laws of Iowa. The dates of approval of the acts are listed after each one and a brief index is included. This is the 1902 reprint by the Historical Department of Iowa.
Resumo:
Macrophage migration inhibitory factor (MIF) is an abundantly expressed proinflammatory cytokine playing a critical role in innate immunity and sepsis and other inflammatory diseases. We examined whether functional MIF gene polymorphisms (-794 CATT(5-8) microsatellite and -173 G/C SNP) were associated with the occurrence and outcome of meningococcal disease in children. The CATT(5) allele was associated with the probability of death predicted by the Pediatric Index of Mortality 2 (P=0.001), which increased in correlation with the CATT(5) copy number (P=0.04). The CATT(5) allele, but not the -173 G/C alleles, was also associated with the actual mortality from meningoccal sepsis [OR 2.72 (1.2-6.4), P=0.02]. A family-based association test (i.e., transmission disequilibrium test) performed in 240 trios with 1 afflicted offspring indicated that CATT(5) was a protective allele (P=0.02) for the occurrence of meningococcal disease. At baseline and after stimulation with Neisseria meningitidis in THP-1 monocytic cells or in a whole-blood assay, CATT(5) was found to be a low-expression MIF allele (P=0.005 and P=0.04 for transcriptional activity; P=0.09 and P=0.09 for MIF production). Taken together, these data suggest that polymorphisms of the MIF gene affecting MIF expression are associated with the occurrence, severity, and outcome of meningococcal disease in children.
Resumo:
PURPOSE: To determine anatomical and functional pelvic floor measurements performed with three-dimensional (3-D) endovaginal ultrasonography in asymptomatic nulliparous women without dysfunctions detected in previous dynamic 3-D anorectal ultrasonography (echo defecography) and to demonstrate the interobserver reliability of these measurements. METHODS: Asymptomatic nulliparous volunteers were submitted to echo defecography to identify dynamic dysfunctions, including anatomical (rectocele, intussusceptions, entero/sigmoidocele and perineal descent) and functional changes (non-relaxation or paradoxical contraction of the puborectalis muscle) in the posterior compartment and assessed with regard to the biometric index of levator hiatus, pubovisceral muscle thickness, urethral length, anorectal angle, anorectal junction position and bladder neck position with the 3-D endovaginal ultrasonography. All measurements were compared at rest and during the Valsalva maneuver, and perineal and bladder neck descent was determined. The level of interobserver agreement was evaluated for all measurements. RESULTS: A total of 34 volunteers were assessed by echo defecography and by 3-D endovaginal ultrasonography. Out of these, 20 subjects met the inclusion criteria. The 14 excluded subjects were found to have posterior dynamic dysfunctions. During the Valsalva maneuver, the hiatal area was significantly larger, the urethra was significantly shorter and the anorectal angle was greater. Measurements at rest and during the Valsalva maneuver differed significantly with regard to anorectal junction and bladder neck position. The mean values for normal perineal descent and bladder neck descent were 0.6 cm and 0.5 cm above the symphysis pubis, respectively. The intraclass correlation coefficient ranged from 0.62-0.93. CONCLUSIONS: Functional biometric indexes, normal perineal descent and bladder neck descent values were determined for young asymptomatic nulliparous women with the 3-D endovaginal ultrasonography. The method was found to be reliable to measure pelvic floor structures at rest and during Valsalva, and might therefore be suitable for identifying dysfunctions in symptomatic patients.
Resumo:
The present study was designed to assess the intestinal absorption of D-xylose and jejunal morphometry in rats with iron-deficiency anemia. Male Wistar rats were randomly divided into a control group (diet containing 50 mg Fe/kg, N = 12) and an anemic group (diet containing <5 mg Fe/kg, N = 12). The animals were housed in individual metabolic cages and deionized water and diet were provided ad libitum for 6 weeks. Hemoglobin and hematocrit were determined at 0, 2, 4, and 6 weeks. At the end of the study the rats were submitted to a D-xylose absorption test (50 mg/100 g body weight) and sacrificed and a jejunal specimen was obtained for morphometric study. At the end of the study the hemoglobin and hematocrit of the anemic rats (8.7 ± 0.9 g/dl and 34.1 ± 2.9%, respectively) were significantly (P < 0.05) lower than those of the controls (13.9 ± 1.4 g/dl and 47.1 ± 1.5%, respectively). There was no statistical difference in D-xylose absorption between the anemic (46.5 ± 7.4%) and control (43.4 ± 9.0%) groups. The anemic animals presented statistically greater villus height (445.3 ± 36.8 µm), mucosal thickness (614.3 ± 56.3 µm) and epithelial surface (5063.0 ± 658.6 µm) than control (371.8 ± 34.3, 526.7 ± 62.3 and 4401.2 ± 704.4 µm, respectively; P < 0.05). The increase in jejunum villus height, mucosal thickness and epithelial surface in rats with iron-deficiency anemia suggests a compensatory intestinal mechanism to increase intestinal iron absorption.
Resumo:
Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.
Resumo:
Whey protein samples (S-1 to S-5) were tested in vivo and in vitro for nutritional properties and selected bioactivities. Weanling male Wistar rats fed modified AIN-93G (12 g protein.100 g-1) diets for 21 days were used the in vivo studies. The nutritional parameters did not differ among the protein diets tested. Erythrocyte glutathione content was considered high and was higher for S-3, but liver glutathione was the same for all dietary groups. For S-3, cytokine secretion (IL-10 and TNF-α) by human peripheral blood mononuclear cells (in RPMI-1640 medium) was higher in the absence of antigen than in the presence of BCG antigen. Interleukin-4 secretion was repressed in all treatments. The IC50, whey protein concentration required to inhibit 50% of the melanoma cell proliferation, was 2.68 mg.mL-1 of culture medium for the S-3 sample and 3.66 mg.mL-1 for the S-2 sample. Based on these results, it was concluded that S-3 (whey protein concentrate enriched with TGF-β and lactoferrin) produced better nutritional and immunological responses than the other products tested.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
Abstract The storage susceptibility of Bambara groundnut (B. G.) (Voandzeia Subterranean (L.) Thouars) to Callosobruchus maculatus and chemical and functional properties of 11 varieties form Far-North of Cameroon were investigate using standard analytical methods. Storage susceptibility shown that, after five months within treatment, C. maculatus destroy 10 to 50% of grains. The chemical characteristics of none attack grains of 11 varieties were range to 18.64 at 21.08%, 6.85 at 7.44%, 49.75 at 52.68% and to 6.05 at 7.55% respectively for protein, fat, starch and free carbohydrate. These chemical characteristics significantly (p < 0.05) decreases form attacks varieties. For the functional parameters, the none attacks grains was range of 130 at 135%, 19.15 at 20.91%, 18.20 at 21.13%, 2.76 at 3.21% and of 8.54 at 10.14% respectively for water capacity absorption, solubility index, gel length, ash and humidity. The results of this study indicated that storage susceptibility, chemical and functional properties of B. G. be dependant to the varieties.
Resumo:
Grape (Vitis spp.) is a culturally and economically important crop plant that has been cultivated for thousands of years, primarily for the production of wine. Grape berries accumulate a myriad of phenylpropanoid secondary metabolites, many of which are glucosylated in plantae More than 90 O-glucosyltransferases have been cloned and biochemically characterized from plants, only two of which have been isolated from Vitis spp. The world-wide economic importance of grapes as a crop plant, the human health benefits associated with increased consumption of grape-derived metabolites, the biological relevance of glucosylation, and the lack of information about Vitis glucosyltransferases has inspired the identification, cloning and biochemical characterization of five novel "family 1" O-glucosyltransferases from Concord grape (Vitis labrusca cv. Concord). Protein purification and associated protein sequencIng led to the molecular cloning of UDP-glucose: resveratrollhydroxycinnamic acid O-glucosyltransferase (VLRSGT) from Vitis labrusca berry mesocarp tissue. In addition to being the first glucosyltransferase which accepts trans-resveratrol as a substrate to be characterized in vitro, the recombinant VLRSGT preferentially produces the glucose esters of hydroxycinnamic acids at pH 6.0, and the glucosides of trans-resveratrol and flavonols at 'pH 9.0; the first demonstration of pH-dependent bifunctional glucosylation for this class of enzymes. Gene expression and metabolite profiling support a role for this enzyme in the bifuncitonal glucosylation ofstilbenes and hydroxycinnamic acids in plantae A homology-based approach to cloning was used to identify three enzymes from the Vitis vinifera TIGR grape gene index which had high levels of protein sequence iii identity to previously characterized UDP-glucose: anthocyanin 5-0-glucosyltransferases. Molecular cloning and biochemical characterization demonstrated that these enzymes (rVLOGTl, rVLOGT2, rVLOGT3) glucosylate the 7-0-position of flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP), but not anthocyanins. Variable gene expression throughout grape berry development and enzyme assays with native grape berry protein are consistent with a role for these enzymes in the glucosylation of flavonols; while the broad substrate specificity, the ability of these enzymes to glucosylate TCP and expression of these genes in tissues which are subject to pathogen attack (berry, flower, bud) is consistent with a role for these genes in the plant defense response. Additionally, the Vitis labrusca UDP-glucose: flavonoid 3-0-glucosyltransferase (VL3GT) was identified, cloned and characterized. VL3GT has 96 % protein sequence identity to the previously characterized Vitis vinifera flavonoid 3-0-glucosyltransferase (VV3GT); and glucosylates the 3-0-position of anthocyanidins and flavonols in vitro. Despite high levels of protein sequence identity, VL3GT has distinct biochemical characteristics (as compared to VV3GT), including a preference for B-ring methylated flavonoids and the inability to use UDP-galactose as a donor substrate. RT-PCR analysis of VL3GT gene expression and enzyme assays with native grape protein is consistent with an in planta role for this enzyme in the glucosylation of anthocyanidins,but not flavonols. These studies reveal the power of combining several biochemistry- and molecular biology-based tools to identify, clone, biochemically characterize and elucidate the in planta function of several biologically relevant O-glucosyltransferases from Vitis spp.