291 resultados para Phylogenetics
Resumo:
The taxonomic position of the endemic New Zealand bat genus Mystacina has vexed systematists ever since its erection in 1843. Over the years the genus has been linked with many microchiropteran families and superfamilies. Most recent classifications place it in the Vespertilionoidea, although some immunological evidence links it with the Noctilionoidea (=Phyllostomoidea). We have sequenced 402 bp of the mitochondrial cytochrome b gene for M. tuberculata (Gray in Dieffenbach, 1843), and using both our own and published DNA sequences for taxa in both superfamilies, we applied different tree reconstruction methods to find the appropriate phylogeny and different methods of estimating confidence in the parts of the tree. All methods strongly support the classification of Mystacina in the Noctilionoidea. Spectral analysis suggests that parsimony analysis may be misleading for Mystacina's precise placement within the Noctilionoidea because of its long terminal branch. Analyses not susceptible to long-branch attraction suggest that the Mystacinidae is a sister family to the Phyllostomidae. Dating the divergence times between the different taxa suggests that the extant chiropteran families radiated around and shortly after the Cretaceous–Tertiary boundary. We discuss the biogeographical implications of classifying Mystacina within the Noctilionoidea and contrast our result with those classifications placing Mystacina in the Vespertilionoidea, concluding that evidence for the latter is weak.
Resumo:
The taxonomic position of the endemic New Zealand bat genus Mystacina has vexed systematists ever since its erection in 1843. Over the years the genus has been linked with many microchiropteran families and superfamilies. Most recent classifications place it in the Vespertilionoidea, although some immunological evidence links it with the Noctilionoidea (=Phyllostomoidea). We have sequenced 402 bp of the mitochondrial cytochrome b gene for M. tuberculata (Gray in Dieffenbach, 1843), and using both our own and published DNA sequences for taxa in both superfamilies, we applied different tree reconstruction methods to find the appropriate phylogeny and different methods of estimating confidence in the parts of the tree. All methods strongly support the classification of Mystacina in the Noctilionoidea. Spectral analysis suggests that parsimony analysis may be misleading for Mystacina's precise placement within the Noctilionoidea because of its long terminal branch. Analyses not susceptible to long-branch attraction suggest that the Mystacinidae is a sister family to the Phyllostomidae. Dating the divergence times between the different taxa suggests that the extant chiropteran families radiated around and shortly after the Cretaceous-Tertiary boundary. We discuss the biogeographical implications of classifying Mystacina within the Noctilionoidea and contrast our result with those classifications placing Mystacina in the Vespertilionoidea, concluding that evidence for the latter is weak.
Resumo:
The termite genus Coptotermes (Rhinotermitidae) is found in Asia, Africa, Central/South America and Australia, with greatest diversity in Asia. Some Coptotermes species are amongst the world’s most damaging invasive termites, but the genus is also significant for containing the most sophisticated mound-building termites outside the family Termitidae. These mound-building Coptotermes occur only in Australia. Despite its economic and evolutionary significance, the biogeographic history of the genus has not been well investigated, nor has the evolution of the Australian mound-building species. We present here the first phylogeny of the Australian Coptotermes to include representatives from all described species. We combined our new data with previously generated data to estimate the first phylogeny to include representatives from all continents where the genus is found. We also present the first estimation of divergence dates during the evolution of the genus. We found the Australian Coptotermes to be monophyletic and most closely related to the Asian Coptotermes, with considerable genetic diversity in some Australian taxa possibly representing undescribed species. The Australian mound-building species did not form a monophyletic clade. Our ancestral state reconstruction analysis indicated that the ancestral Australian Coptotermes was likely to have been a tree nester, and that mound-building behaviour has arisen multiple times. The Australian Coptotermes were found to have diversified ∼13 million years ago, which plausibly matches with the narrowing of the Arafura Sea allowing Asian taxa to cross into Australia. The first diverging Coptotermes group was found to be African, casting doubt on the previously raised hypothesis that the genus has an Asian origin.
Resumo:
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc-SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.
Resumo:
Recent molecular studies on langurs of the Indian subcontinent suggest that the widely-distributed and morphologically variable Hanuman langurs (Semnopithecus entellus) are polyphyletic with respect to Nilgiri and urple-faced langurs. To further investigate this scenario, we have analyzed additional sequences of mitochondrial cytochrome b as well as nuclear protamine P1 genes from these species. The results confirm Hanuman langur polyphyly in the mitochondrial tree and the nuclear markers suggest that the Hanuman langurs share protamine P1 alleles with Nilgiri and purple-faced langurs. We recommend provisional splitting of the so-called Hanuman langurs into three species such that the taxonomy is consistent with their evolutionary relationships.
Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae)
Resumo:
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.
Resumo:
Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Given that peninsular India was part of the Gondwanan super continent, part of its current biota has Gondwanan origin. To determine the Gondwanan component of the peninsular Indian biota, a large number of species spanning diverse taxonomic groups need to be sampled from multiple, if not all, of the former Gondwanan fragments. Such a large scale phylogenetic approach will be time consuming and resource intensive. Here, we explore the utility of a limited sampling approach, wherein sampling is confined to one of the Gondwanan fragments (peninsular India), in identifying putative Gondwanan elements. To this end, samples of Scolopendrid centipedes from Western Ghats region of peninsular India were subjected to molecular phylogenetic and dating analyses. The resulting phylogenetic tree supported monophyly of the family Scolopendridae which was in turn split into two clades constituting tribes Otostigmini and Scolopendrini-Asanadini. Bayesian divergence date estimates suggested that the earliest diversifications within various genera were between 86 and 73 mya, indicating that these genera might have Gondwanan origin. In particular, at least four genera of Scolopendrid centipedes, Scolopendra, Cormocephalus, Rhysida and Digitipes, might have undergone diversification on the drifting peninsular India during the Late Cretaceous. These putative Gondwanan taxa can be subjected to more extensive sampling to confirm their Gondwanan origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Recent generic rearrangement of the circumtropical distributed skink genus `Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of `Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.
Resumo:
The India-Asia collision profoundly influenced the climate, topography and biodiversity of Asia, causing the formation of the biodiverse Himalayas. The species-rich gekkonid genus Cyrtodactylus is an ideal clade for exploring the biological impacts of the India-Asia collision, as previous phylogenetic hypotheses suggest basal divergences occurred within the Himalayas and Indo-Burma during the Eocene. To this end, we sampled for Cyrtodactylus across Indian areas of the Himalayas and Indo-Burma Hotspots and used three genes to reconstruct relationships and estimate divergence times. Basal divergences in Cyrtodactylus, Hemidactylus and the Palaearctic naked-toed geckos were simultaneous with or just preceded the start of the India-Asia collision. Diversification within Cyrtodactylus tracks the India-Asia collision and subsequent geological events. A number of geographically concordant clades are resolved within Indo-Burmese Cyrtodactylus. Our study reveals 17 divergent lineages that may represent undescribed species, underscoring the previously undocumented diversity of the region. The importance of rocky habitats for Cyrtodactylus indicates the Indo-Gangetic flood plains and the Garo-Rajmahal Gap are likely to have been important historical barriers for this group. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for Geckoella across peninsular India. A multi-locus phylogeny reveals Geckoella diversity is hugely underestimated, with at least seven undescribed species, doubling previously known richness. Strikingly, the new species correspond to cryptic lineages within described Indian species (complexes); a number of these endemic lineages from the hills of peninsular India outside the Western Ghats, highlighting the undocumented diversity of the Indian dry zone. The Geckoella phylogeny demonstrates deep splits between the Indian species and Sri Lankan G. triedrus, and between Indian dry and wet zone clades, dating back to the late Oligocene. Geckoella and brookii group Hemidactylus show contrasting diversification patterns. Geckoella shows signals of niche conservatism and appears to have retained its ancestral forest habitat. The late Miocene burst in speciation in Geckoella may be linked to the expansion of rain forests during the mid-Miocene climatic optimum and subsequent fragmentation with increasing late Miocene aridification. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
283 p. : graf., map.
Resumo:
9 p.