943 resultados para Phenolic Polymers
Resumo:
Coupling five rigid or flexible bis(pyrazolato)based tectons with late transition metal ions allowed us to isolate 18 coordination polymers (CPs). As assessed by thermal analysis, all of them possess a remarkable thermal stability, their decomposition temperatures lying in the range of 340-500 degrees C. As demonstrated by N-2 adsorption measurements at 77 K, their Langmuir specific surface areas span the rather vast range of 135-1758 m(2)/g, in agreement with the porous or dense polymeric architectures retrieved by powder X-ray diffraction structure solution methods. Two representative families of CPs, built up with either rigid or flexible spacers, were tested as catalysts in (0 the microwave-assisted solvent-free peroxidative oxidation of alcohols by t-BuOOH, and (ii) the peroxidative oxidation of cydohexane to cydohexanol and cydohexanone by H2O2 in acetonitrile. Those CPs bearing the rigid spacer, concurrently possessing higher specific surface areas, are more active than the corresponding ones with the flexible spacer. Moreover, the two copper(I)-containing CPs investigated exhibit the highest efficiency in both reactions, leading selectively to a maximum product yield of 92% (and TON up to 1.5 x 10(3)) in the oxidation of 1-phenylethanol and of 11% in the oxidation of cydohexane, the latter value being higher than that granted by the current industrial process.
Resumo:
The authors studied 70 leprosy patients and 20 normal individuals, comparing the traditional sera collection method and the finger prick blood with the conservation on filter paper for specific antibodies against the native phenolic glycolipid-I (PGL-I) from Mycobacterium leprae. The finger prick blood dried on filter paper was eluated in phosphate buffer saline (PBS) containing 0.5% gelatin. The classical method for native PGL-I was performed for these eluates, and compared with the antibody determination for sera. It was observed that there is a straight correlation comparing these two methods; although the titles found for the eluates were lower than those obtained for serology. This blood collection method could be useful for investigation of new leprosy cases in field, specially in contacts individuals.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.
Resumo:
Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent from the pH of test solutions within 2.0–5.5. Good selectivity was observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0 × 10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0 × 10−4 to 1.0 × 10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1 × 10−5 and 5.5 × 10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
Background Over the years, food industry wastes have been the focus of a growing interest due to their content in high added-value compounds. A good example are the olive oil by-products (OOBP), which retain a great amount of phenolic compounds during olive oil production. Their structure and biological properties justify their potential use as antioxidants in other food products. The efficient recovery of phenolic compounds has been extensively studied and optimized in order to maximize their reintroduction in the food chain and contribute to a higher valorization and better management of wastes from olive oil industry. Scope and approach This paper reviews the most representative phenolic compounds described in OOBP and their biological properties. New extraction procedures to efficiently recover these compounds and the most advanced chromatographic techniques that have been used for a better understanding of the phenolic profile of these complex matrices are also referred. Finally, this paper reports the main applications of OOBP, with emphasis on their phenolic content as natural antioxidants for food applications. Key findings and conclusions Besides their antioxidant activity, phenolic compounds from OOBP have also shown antimicrobial and antitumoral properties. Their application as food antioxidants requires new extraction techniques, including the use of non-toxic solvents and, in a pilot scale, the use of filters and adsorbent resins. The inclusion of phenolic compounds from OOBP in some food matrices have improved not only their antioxidant capacity but also their sensory attributes.
Resumo:
n this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertation for the Master Degree in Technology and Food Security
Resumo:
Dissertation toobtaina Master of Science degree in Bioorganics
Resumo:
Dissertação Para Obtenção Do Grau De Mestre Em Bioorgânica