826 resultados para Phenol
Resumo:
Dissertação de mest., Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011
Resumo:
Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has significantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications.
Resumo:
Phenol is a toxic compound present in a wide variety of foundry resins. Its quantification is important for the characterization of the resins as well as for the evaluation of free contaminants present in foundry wastes. Two chromatographic methods, liquid chromatography with ultraviolet detection (LC-UV) and gas chromatography with flame ionization detection (GC-FID), for the analysis of free phenol in several foundry resins, after a simple extraction procedure (30 min), were developed. Both chromatographic methods were suitable for the determination of phenol in the studied furanic and phenolic resins, showing good selectivity, accuracy (recovery 99–100%; relative deviations <5%), and precision (coefficients of variation <6%). The used ASTM reference method was only found to be useful in the analysis of phenolic resins, while the LC and GC methods were applicable for all the studied resins. The developed methods reduce the time of analysis from 3.5 hours to about 30 min and can readily be used in routine quality control laboratories.
Resumo:
Tesis (Doctor en Ciencias con Orientación en Procesos Sustentables) UANL, 2013.
Resumo:
Alkylation of phenol with methanol has been carried out over Sn-La and Sn-Sm mixed oxides of varying compositions at 623 K in a vapour phase flow reactor. It is found that the product selectivity is greatly influenced by the acid-base properties of the catalysts. Ortho-cresol formation is favoured over catalysts with weak acid sites whereas formation of 2,6-xylenol occurs in the presence of stronger acid sites. The cyclohexanol decomposition reaction and titrimetric method using Hammett indicators have been employed to elucidate the acid-base properties of the catalysts.
Resumo:
Vapour phase methylation of phenol is carried out over La2O3 supported vanadia systems of various composition. The structural features and physico chemical characterisation of the catalysts are investigated. Orthovanadates are formed in addition to surface vanadyl species on the metal oxide support. No V2O5 crystallites are detected. The acid base properties of the oxides are studied by Hammett indicator method and decomposition of cyclohexanol.The data are correlated with the catalytic activity and selectivity of the products. Ring alkylation is found to be predominant over these catalysts.
Resumo:
The present work investigates on the applicability of metal promoted sulphated zirconia catalysts for the hydroxylation of phenol under mild conditions. The percentage conversion and product distribution was highly sensitive towards the reaction parameters like the catalyst composition, reaction temperature, H202/ phenol ratio and the solvent used.
Resumo:
Wet peroxide oxidation (WPO) of phenol is an effective means for the production of diphenols, which are of great industrial importance. An added advantage of this method is the removal of phenol from wastewater effluents. Hydroxylation of phenol occurs efficiently over mixed iron aluminium pillared montmorillonites. An initial induction period is noticed in all cases. A thorough study on the reaction variables suggests free radical mechanism for the reaction.
Resumo:
Titania, sulfated titania and chromium loaded sulfated titania were prepared by sol–gel method and characterized using different technique. Phenol is nitrated regioselectively by nitric acid using chromium loaded sulfated titania catalysts. A remarkable ortho selectivity is observed in solid state nitration to yield exclusively ortho-nitrophenol. Compared to the conventional process, phenol nitration over solid acid catalyst is a clean and environment friendly process. Catalytic activity well correlates with the Brönsted acid sites of these catalysts.
Resumo:
Phenolic resins suffer from the presence of microvoids on curing. This often leads to less than satisfactory properties in the cured resin. This disadvantage has limited the use of phenolic resins to some extent. This study is an attempt to improve the mechanical properties of the phenolic resol resins by chemical modification aimed at reducing the microvoid population. With this end in view various themoset resins synthesised under predetennined conditions have been employed for modifying phenolic resols. Such resins include unsaturated polyester, epoxy and epoxy novolac prepolymers. The results establish the effectiveness of these resins for improving the mechanical properties of phenolics. Experimental and analytical techniques used include FTIR, DMA, TGA, SEM and mechanical property evaluation. While most of the modifier resins employed give positive results the effect of adding UP is found to be surprising as well as impressive.
Resumo:
Information on the distribution of dissolved Folin phenol active substances (FPAS) such as tannin and lignin in the seawater along the west coast of India is provided. Notable amounts of FPAS (surface concentrations: 80 f.1gll to 147 f.1gll and bottom concentrations: 80 f.1gll to 116 f.1gll) were detected in the seawater along the coast. The distribution pattern brings about a general depth-wise decrease. A seaward decrease was observed in the southern stations whereas reverse was the case in northern stations. A significant negative correlation was observed between FPAS concentration and dissolved oxygen in sub-surface samples. The appreciable amounts of FPAS detected in the coastal waters indicate the presence of organic matter principally originating from terrestrial (upland and coastal marsh) ecosystems in the marine environment. In this context, they may be used as tracers to determine the fate of coastalborn dissolved organic matter in the ocean and to determine directly the relationship between allochthonous and autochthonous organic matter
Resumo:
In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance
Resumo:
Phenol is an aromatic hydrocarbon which exists as a colorless or white solid in its pure state. Over the past several decades, there is growing concern about wide spread contamination of surface and ground water by phenol, due to rapid development of chemical and petrochemical industries. Phenol affects aquatic life even at relatively low concentration (5-25mg/L). Treatment for removal of phenol includes chemical as well as biological processes. Studies show that ligninases such as Lignin Peroxidase and Laccase, produced by Pleurotus sp., can degrade phenol. Spent substrate of Pleurotus mushrooms consists of ligninases. Present work was to investigate the potential of spent substrate of edible mushroom P. ostreatus for biodegradation of phenol. P. ostreatus was cultivated on paddy straw. After harvest, spent substrate was utilized for phenol degradation. According to the enzyme profile of two ligninases present in the spent substrate of P. ostreatus, maximum specific activity for Laccase was observed in 35 day old spent substrate and LiP activity was maximum in 56 day old spent substrate, which together contributed significantly for removal of phenol. Spent substrate of 35th and 56th day were each incubated with phenol sample (1:1w/v) for one day, which resulted in degradation of phenol by 48% and 45% respectively. From these results it appears that, spent substrate of P. ostreatus can be used effectively to remove phenol from industrial effluents
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.