902 resultados para Pfg-nmr


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin-spin relaxation times, T-2, of hydrated samples of poly(hydroxymethyl methacrylate), PHEMA, poly(tetrahydrofurfuryl methacrylate),PTHFMA, and the,corresponding HEMA-THFMA copolymers have been examined to probe the states of,the imbibed water in these polymers. The decay in the transverse magnetization of water. in fully hydrated samples of PHEMA, PTHFMA, and copolymers of HEMA and THFMA was described by a multiexponential function. The short component of T-2 was interpreted as water molecules that were strongly interacting with the polymer chains. The intermediate component of T-2 was assigned to water residing in the porous structure of the samples. The long component of T-2 was believed to arise from water residing in the remnants of cracks formed in the polymer network during water sorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of gamma-radiation on a perfluoroalkoxy (PFA) resin was examined using solid-state high-speed magic angle spinning (MAS) F-19 NMR spectroscopy. Samples were prepared for analysis by subjecting them to gamma-radiation in the dose range 0.5-3 MGy at either 303, 473, or 573 K. New structures identified include new saturated chain ends, short and long branches, and unsaturated groups. The formation of branched structures was found to increase with increasing irradiation temperature; however, at all temperatures the radiation chemical yield (G value) of new chain ends was greater than the G value of long branch points, suggesting that chain scission is the net process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) (PDMS) under vacuum at 303 K have been investigated using Si-29 and C-13 NMR. New structural units consistent with main chain scission and crosslinking through both H-linking and Y-linking reactions have been identified. The results obtained at various absorbed doses have been used to calculate the G-values for scission and crosslinking. G-values for scission of G(S) = 1.3 +/- 0.2, for H-linking of G(D-CH2-R) = 0.34 +/- 0.02 and for Y-Linking of G(Y) = 1.70 +/- 0.09 were obtained for radiolysis under vacuum at 303 K. Thus crosslinking predominates over scission for radiolysis of PDMS under these conditions, and, by contrast with previous studies, Y-links have been shown to be the predominant form of crosslinks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of change in land-use from native vegetation to pasture (20-71 yr after conversion), and subsequent change from pasture to eucalypt plantation (7-10 yr after conversion) on soil organic matter quality was investigated using C-13 CP/MAS NMR spectroscopy. We studied surface soil (0-10 cm) from six sites representing a range of soil, and climate types from south-western Australia. Total C in the samples ranged from 1.6 to 5.5%, but the relative proportions of the four primary spectral regions (alkyl, O-alkyl, aromatic and carboxylic) were similar across the sites, and changes due to land-use at each site were relatively minor. Main impacts of changed land-use were higher O-alkyl (carbohydrate) material under pasture than under native vegetation and plantation (P = 0.048), and lower aromatic C under pasture than under native vegetation (P = 0.027). The decrease in aromatic C in pasture soils was related to time since clearing. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using H-1 NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deterioration of concrete or reinforcing steel through excessive contaminant concentration is often the result of repeated wetting and drying cycles. At each cycle, the absorption of water carries new contaminants into the unsaturated concrete. Nuclear Magnetic Resonance (NMR) is used with large concrete samples to observe the shape of the wetting profile during a simple one-dimensional wetting process. The absorption of water by dry concrete is modelled by a nonlinear diffusion equation with the unsaturated hydraulic diffusivity being a strongly nonlinear function of the moisture content. Exponential and power functions are used for the hydraulic diffusivity and corresponding solutions of the diffusion equation adequately predict the shape of the experimental wetting profile. The shape parameters, describing the wetting profile, vary little between different blends and are relatively insensitive to subsequent re-wetting experiments allowing universal parameters to be suggested for these concretes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.