106 resultados para Petals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effects of application of 0.5 µl L-1 1-methyl-cyclopropene (1-MCP), 1000 mg L-1 salicylic acid (SA) and the interaction between the two products at room temperature and pre-exposure at 9±2°C for 24 h in maintaining postharvest quality of lisianthus flowers. After applying the treatment, the flowers were kept in jars with water, stored at 24±2°C. The SA treatments proved ineffective, presenting symptoms of phytotoxicity, with high rate of bent neck and yellowing of petals, both at room temperature and in cold storage, and propitiate the emergence of pathogens. The association between 1-MCP in pre-exposure to 9±2°C for 24 h increased the durability of the stems in six days compared to the control treatment, with less symptoms of bent neck and swelling of stems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new species of Pelexia Poit. ex Until. (Orchidaceae, Spiranthinae) occurring in central Sao Paulo, southeastern Brazil, is described and illustrated as P. vinosa A. W. C. Ferreira, M. I. S. Lima & Pansarin. Pelexia vinosa is recognized by its leaves that are present at flowering and its dark purple leaf blades with reddish margins. Inflorescences are sparsely pubescent and reddish. The red sepals contrast with the white hyaline petals and labellum. The species is notable for its spurlike nectary that is parallel and adnate to the ovary. The new species is morphologically similar to P. laxa (Poepp. & Endl.) Lindl. In addition, the need to preserve native areas of the interior of Sao Paulo State (habitat of P. vinosa) is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Male capacity for spreading genes to a great number of descendents and to determine population dynamics depend directly on the genital organs. Morphological studies in pinnipeds are scarce and the functional meaning of some characteristics has never been discussed. We hypothesized that Arctocephalus australis (A. australis) shows morphophysiological adaptations in order to guarantee the perpetuation of the species in the unique annual mating season. Seven males, dead from natural causes, had their genital organs collected and fixed for morphological description. Some features differ from other described mammalian males and are closely related to the biology and reproductive cycle of this species, as the scrotal epidermis, absence of glandular portion in the ductus deferens and spermatogenic epithelium suggest a recrudescent testis period. The corona glandis exhibits a singular arrangement: its erectile border looks like a formation of petals and its association with the os penis gives a "lily-flower" form to this region. We propose the name margo petaliformis to this particular erectile border of the corona glandis because of its similarity to a flower corola. The male genital organs of A. australis show morphological features compatible with adaptation to environment requirements and reproductive efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cells of the endosperm of castor bean seeds (Ricinus communis) undergo programmed cell death during germination, after their oil and protein reserves have been mobilized. Nuclear DNA fragmentation first was observed at day 3 in the endosperm cells immediately adjacent to the cotyledons and progressed across to the outermost cell layers by day 5. We also detected the accumulation of small organelles known as ricinosomes, by using an antibody against a cysteine endoprotease. By the time the nuclear DNA was susceptible to heavy label by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, the ricinosomes had released into the cytoplasm their content of cysteine endoprotease, which became activated because of the cleavage of its propeptide. The cysteine endoprotease is distinguished by a C-terminal KDEL sequence, although it is not retained in the lumen of the endoplasmic reticulum and is a marker for ricinosomes. Homologous proteases are found in the senescing tissues of other plants, including the petals of the daylily. Ricinosomes were identified in this tissue by electron microscopy and immunocytochemistry. It seems that ricinosomes are not unique to Ricinus and play an important role in the degradation of plant cell contents during programmed cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FLORICAULA (FLO) of Antirrhinum and LEAFY (FLY) of Arabidopsis regulate the formation of floral meristems. To examine whether same mechanisms control floral development in distantly related species such as grasses, we isolated RFL, FLO-LFY homolog of rice, and examined its expression and function. Northern analysis showed that RFL is expressed predominantly in very young panicle but not in mature florets, mature leaves, or roots. In situ hybridization revealed that RFL RNA was expressed in epidermal cells in young leaves at vegetative growth stage. After the transition to reproductive stage, RFL RNA was detected in all layers of very young panicle including the apical meristem, but absent in the incipient primary branches. As development of branches proceeds, RFL RNA accumulation localized in the developing branches except for the apical meristems of the branches and secondary branch primordia. Expression pattern of RFL raised a possibility that, unlike FLO and LFY, RFL might be involved in panicle branching. Transgenic Arabidopsis plants constitutively expressing RFL from the cauliflower mosaic virus 35S promoter were produced to test whether 35S-RFL would cause similar phenotype as observed in 35S-LFY plants. In 35S-RFL plants, transformation of inflorescence meristem to floral meristem was rarely observed. Instead, development of cotyledons, rosette leaves, petals, and stamens was severely affected, demonstrating that RFL function is distinct from that of LFY. Our results suggest that mechanisms controlling floral development in rice might be diverged from that of Arabidopsis and Antirrhinum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypocotyl of Arabidopsis is well suited for the analysis of cell elongation because it elongates without cell division. We have isolated a new class of recessive mutants, petit1 (pet1), which are defective in aspects of hypocotyl elongation. The short-hypocotyl phenotype of pet1 is caused by shortened cells. The cells of the elongation zone of the hypocotyl are often deformed. pet1 also shows defects in elongation of the roots, flower stalk, leaves, petals, pedicels, and siliques, and these defects cannot be repaired by the application of auxin, gibberellin, brassinolide, or an inhibitor of ethylene biosynthesis. The short-hypocotyl phenotype of pet1 is pronounced only in growth medium supplemented with sucrose, which has promotive effects on hypocotyl elongation. In pet1 this effect is much reduced, causing the sucrose-dependent short-hypocotyl phenotype of pet1. pet1 accumulates more soluble sugars than the wild type and also shows more intensive iodo-starch staining in the cotyledon and hypocotyl. These results indicate that PETIT1 is involved in a sugar-dependent elongation process that may include correct assembly of expanding cell wall architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fragrance of Clarkia breweri (Onagraceae), a California annual plant, includes three benzenoid esters: benzylacetate, benzylbenzoate, and methylsalicylate. Here we report that petal tissue was responsible for the benzylacetate and methylsalicylate emission, whereas the pistil was the main source of benzylbenzoate. The activities of two novel enzymes, acetyl-coenzyme A:benzylalcohol acetyltransferase (BEAT), which catalyzes the acetyl esterification of benzylalcohol, and S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, which catalyzes the methyl esterification of salicylic acid, were also highest in petal tissue and absent in leaves. In addition, the activity of both enzymes in the various floral organs was developmentally and differentially regulated. S-Adenosyl-l-methionine:salicylic acid carboxyl methyltransferase activity in petals peaked in mature buds and declined during the next few days after anthesis, and it showed a strong, positive correlation with the emission of methylsalicylate. The levels of BEAT activity and benzylacetate emission in petals also increased in parallel as the buds matured and the flowers opened, but as emission began to decline on the 2nd d after anthesis, BEAT activity continued to increase and remained high until the end of the lifespan of the flower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The promoter of the bean PAL2 gene (encoding phenylalanine ammonia-lyase; EC 4.3.1.5) is a model for studies of tissue-restricted gene expression in plants. Petal epidermis is one of the tissues in which this promoter is activated in tobacco. Previous work suggested that a major factor establishing the pattern of PAL2 expression in tobacco petals is the tissue distribution of a protein closely related to Myb305, which is a Myb-like transcriptional activator from snapdragon. In the present work, we show that Myb305 expression in tobacco leaves causes ectopic activation of the PAL2 promoter. To achieve Myb305 expression in planta, a viral expression vector was used. This approach combines the utility of transient assays with the possibility of direct biochemical detection of the introduced factor and may have wider application for studying the function of plant transcription factors.