950 resultados para Perturbation theory, spectral subspaces, operator angle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The values of material physical properties are vital for the successful use of numerical simulations for electromagnetic processing of materials. The surface tension of materials can be determined from the experimental measurement of the surface oscillation frequency of liquid droplets. In order for this technique to be used, a positioning field is required that results in a modification to the oscillation frequency. A number of previous analytical models have been developed that mainly focus on electrically conducting droplets positioned using an A.C. electromagnetic field, but due to the turbulent flow resulting from the high electromagnetic fields required to balance gravity, reliable measurements have largely been limited to microgravity. In this work axisymmetric analytical and numerical models are developed, which allow the surface tension of a diamagnetic droplet positioned in a high DC magnetic field to be determined from the surface oscillations. In the case of D.C. levitation there is no internal electric currents with resulting Joule heating, Marangoni flow and other effects that introduce additional physics that complicates the measurement process. The analytical solution uses the linearised Navier-Stokes equations in the inviscid case. The body force from a DC field is potential, in contrast to the AC case, and it can be derived from Maxwell equations giving a solution for the magnetic field in the form of a series expansion of Legendre polynomials. The first few terms in this expansion represent a constant and gradient magnetic field valid close to the origin, which can be used to position the droplet. Initially the mathematical model is verified in microgravity conditions using a numerical model developed to solve the transient electromagnetics, fluid flow and thermodynamic equations. In the numerical model (as in experiment) the magnetic field is obtained using electrical current carrying coils, which provides the confinement force for a liquid droplet. The model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the droplet and the non-uniform external magnetic field. A comparison is made between the analytical perturbation theory and the numerical pseudo spectral approximation solutions for small amplitude oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of calculations investigating the effects of autodetaching resonances on the multiphoton detachment spectra of H are presented. The R-matrix Floquet method is used, in which the coupling of the ion with the laser field is described non-perturbatively. The laser field is fixed at an intensity of 10 W cm, while frequency ranges are chosen such that the lowest autodetaching states of the ion are excited through a two- or three-photon transition from the ground state. Detachment rates are compared, where possible, to previous results obtained using perturbation theory. An illustration of how non-lowest-order processes, involving autodetaching states, can lead to light-induced continuum structures is also presented. Finally, it is demonstrated that by using a frequency connecting the 1s and 2s states, the probability of exciting the residual hydrogen atom is significantly enhanced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kr 4s-electron photoionization cross section as a function of the exciting-photon energy in the range between 30 eV and 90 eV was calculated using the configuration interaction (CI) technique in intermediate coupling. In the calculations the 4p spin-orbital interaction and corrections due to higher orders of perturbation theory (the so-called Coulomb interaction correlational decrease) were considered. Energies of Kr II states were calculated and agree with spectroscopic data within less than 10 meV. For some of the Kr II states new assignments were suggested on the basis of the largest component among the calculated CI wavefunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of many-electron radiative transitions involving three electrons is predicted. The results of their investigation by many-body perturbation theory are presented. New spectral lines observed in the wavelength range of 37.5 to 54.0 nm by means of photon-induced fluorescence spectroscopy (PIFS) following the excitation of the Kr I 3d{^-1}np resonances are reported and compared with the predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the properties of the vertex operator for the beta-deformation of the superstring in AdS(5) x S(5) in the pure spinor formalism. We discuss the action of supersymmetry on the infinitesimal beta-deformation, the application of the homological perturbation theory, and the relation between the worldsheet description and the spacetime supergravity description. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the quantum Hall regime, the longitudinal resistivity rho (xx) plotted as a density-magnetic-field (n (2D) -B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [see, e.g., Zhang et al., in Phys. Rev. Lett. 95:216801, 2005. For tilted magnetic fields, some of these ringlike structures ""shrink"" as the tilt angle is increased and fully collapse at theta (c) a parts per thousand 6A degrees. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anticrossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n (2D) -B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as rho (xx) in the n (2D) -B diagram. For the ring with filling factor nu=4, we find that the anticrossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the theta=0A degrees data, we find a collapsing angle theta (c) a parts per thousand 3.6A degrees. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dirac's hole theory and quantum field theory are usually considered equivalent to each other. The equivalence, however, does not necessarily hold, as we discuss in terms of models of a certain type. We further suggest that the equivalence may fail in more general models. This problem is closely related to the validity of the Pauli principle in intermediate states of perturbation theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables tau(1), tau(3), tau(5), ..., we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg-de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude zeta(0) satisfies the KdV equation in the time tau(3), it must satisfy the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1), With n = 2, 3, 4,.... AS a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (zeta(1), zeta(2),...) of the amplitude can be eliminated when zeta(0) is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude zeta(0) satisfies the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1) This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.