927 resultados para Periodontal Medicine
Resumo:
OBJECTIVES To evaluate possible differences in periodontal inflammatory, microbiological and clinical parameters between women with preterm premature rupture of membranes (PPROM) and controls with uncomplicated pregnancies. MATERIALS AND METHODS Fifty-six women (32 test (PPROM) and 24 controls (uncomplicated pregnancies)) were examined at three time-points (T1: gestational weeks 20-35, T2: within 48 h after parturition, T3: 4-6 weeks after parturition). The examinations included assessment of the Periodontal Screening Index, collection of gingival crevicular fluid (GCF) and subgingival as well as vaginal bacterial sampling. RESULTS Periodontal inflammation was found to be higher in the test compared with the control group (p < 0.05) and decreased over time in both groups (p < 0.05). Microbiological outcomes showed no intergroup differences (p > 0.05) in prevalence of bacteria, but a decrease in subgingival periodontopathogens from T1 to T2 in the test group (p < 0.05) was observed. Interleukin (IL)-1β levels in GCF at T2 were not different between groups (p > 0.05). In women with PPROM, GCF levels of IL-8 (p < 0.05) and C-reactive protein (p < 0.05) were lower and IL-10 levels higher (p < 0.05) compared with controls. CONCLUSIONS Periodontal inflammation is elevated during pregnancy and seems to be more pronounced in women with PPROM. CLINICAL RELEVANCE The findings of the present study revealed an association between periodontal inflammation and PPROM, thus emphasizing the importance of optimizing self-performed oral hygiene in pregnant women.
Resumo:
BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying
Resumo:
BACKGROUND AND AIM There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. MATERIAL AND METHODS Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. RESULTS After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. CONCLUSION The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.
Resumo:
AIM To assess the long-term success of maxillary fixed retainers, investigate their effect on gingival health, and analyse the survival rate after a mean period of 7 years (minimum 5 years) in retention. SUBJECTS AND METHODS Forty one subjects were included in the study A clinical examination of the upper canine to canine region including gingival index (GI), plaque index, probing depth, and bleeding on probing (BOP) was performed. Intraoral photographs and dental impressions were taken and irregularity index was determined and compared to the values of the immediate post-therapeutic values; failures of retainers were also recorded and analysed. RESULTS The mean observed retention time was 7 years and 5 months. Irregularity index: Changes occurring during retention were statistically different between the lateral incisors bonded to retainers and the canines not bonded to retainers. Only six patients showed changes in irregularity index of the lateral incisors in spite of a retainer in place. Periodontal health: The median value of the GI for all teeth bonded to upper retainers was 1.10 and the median value of the plaque index (PI) was 1.14. PI was not a significant predictor of GI. The overall BOP of the bonded teeth to the retainer for each participant was 22.3 per cent. Failure rate: Twenty-eight out of 41 patients experienced no failure of the upper bonded retainer (68.3 per cent). Detachments were the most frequent incidents. CONCLUSION Although plaque accumulation might be increased in patients with already poor oral hygiene, maxillary bonded retainers caused no significant negative effects on the periodontal health.
Resumo:
BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.
Resumo:
OBJECTIVES To characterize the physical characteristics of a new low abrasive erythritol powder (EPAP) and to evaluate its influence on the clinical and microbiologic parameters over a period of 6 months in patients undergoing supportive periodontal therapy (SPT). METHOD AND MATERIALS Prior to the clinical application, the particle size and abrasion level of EPAP were compared to glycine air-polishing powder (GPAP) ex vivo. Subsequently, 40 chronic periodontitis patients previously enrolled in SPT were randomly assigned into two groups for the treatment with subgingival EPAP or repeated scaling and root planing (SRP). At baseline (BL), bleeding on probing positive (BOP+) sites with probing pocket depth (PPD) of ≥ 4 mm but no detectable calculus were defined as study sites. During SPT, these sites were either treated by EPAP or SRP at BL, 3, and 6 months (3M, 6M). When indicated, additional SRP was provided. Plaque Index, BOP, PPD, clinical attachment level (CAL), and subgingival plaque were evaluated at BL and 6M. RESULTS EPAP yielded lower abrasiveness and smaller particle sizes when compared to GPAP. In 38 patients completing the study, EPAP and SRP resulted in significant reductions of BOP% (EPAP, 40.45%; SRP, 42.53%), PPD (EPAP, -0.67; SRP, -0.68), and increase of CAL (EPAP, 0.48; SRP, 0.61) while at 6M no statistically significant between-group differences were observed (P > .05). Microbiologic evaluation revealed minor shifts in the composition of the subgingival biofilm without influence on periodontopathogenic bacteria. CONCLUSION The subgingival use of EPAP by means of an air-polishing device may be considered safe and may lead to comparable clinical and microbiologic outcomes to those obtained with SRP. CLINICAL RELEVANCE The subgingival use of EPAP appears to represent a promising modality for the removal of subgingival biofilm during SPT.
Resumo:
Antimicrobial photodynamic therapy (PDT) has attracted much attention for the treatment of pathogenic biofilm associated with peridontitis and peri-implantitis. However, data from randomized controlled clinical studies (RCTs) are limited and, to some extent, controversial, making it difficult to provide appropriate recommendations. Therefore, the aims of the present study were (a) to provide an overview on the current evidence from RCTs evaluating the potential clinical benefit for the additional use of PDT to subgingival mechanical debridement (ie, scaling and root planing) alone in nonsurgical periodontal therapy; and (b) to provide clinical recommendations for the use of PDT in periodontal practice.
Resumo:
AIM The local delivery of growth factors via gene therapy has gained tremendous awareness in recent years due to their sustained growth factor delivery to target tissues. The aim of this study was to fabricate and investigate a scaffold able to release growth factors via gene therapy for the repair of periodontal tissues. MATERIALS AND METHODS Novel mesoporous bioglass (MBG)/silk fibrin scaffold combined with BMP7 and/or PDGF-B adenovirus was fabricated and tested in vitro for cell migration, proliferation and differentiation. Furthermore, acute-type buccal dehiscence periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the buccal portion of the maxillary premolars in five normal male beagle dogs (12 months old, 15.0 ± 2.0 kg) and histologically examined for periodontal regeneration following implantation of the following five groups: (1) no scaffold, (2) MBG/silk scaffold alone, (3) scaffold + adPDGF-B, (4) scaffold + adBMP7, (5) scaffold + adPDGF-b + adBMP7. RESULTS In vitro findings demonstrated that adPDGF-B was able to rapidly recruit periodontal ligament (PDL) cells over sixfold more effectively than adBMP7, whereas adBMP7 was more able to induce osteoblast differentiation of PDL cells. In vivo findings demonstrate that scaffolds loaded with adPDGF-B were able to partially regenerate the periodontal ligament while adBMP7 scaffolds primarily improved new bone formation. The combination of both adPDGF-B and adBMP7 synergistically promoted periodontal regeneration by allowing up to two times greater regeneration of the periodontal ligament, alveolar bone and cementum when compared to each adenovirus used alone. CONCLUSIONS Although both PDGF-B and BMP7 are individually capable of promoting periodontal regeneration to some degree, their combination synergistically promotes wound healing in acute-type buccal dehiscence periodontal defects when delivered simultaneously. This study demonstrates the promise for successful delivery of low-cost, effective growth factor delivery via gene therapy for the treatment of periodontal defects.
Resumo:
AIM To relate the mean percentage of bleeding on probing (BOP) to smoking status in patients enrolled in supportive periodontal therapy (SPT). MATERIALS AND METHODS Retrospective data on BOP from 8'741 SPT visits were related to smoking status among categories of both periodontal disease severity and progression (instability) in patients undergoing dental hygiene treatment at the Medi School of Dental Hygiene (MSDH), Bern, Switzerland 1985-2011. RESULTS A total of 445 patients were identified with 27.2% (n = 121) being smokers, 27.6% (n = 123) former smokers and 45.2% (n = 201) non-smokers. Mean BOP statistically significantly increased with disease severity (p = 0.0001) and periodontal instability (p = 0.0115) irrespective of the smoking status. Periodontally stable smokers (n = 30) categorized with advanced periodontal disease demonstrated a mean BOP of 16.2% compared to unstable smokers (n = 15) with a mean BOP of 22.4% (p = 0.0291). Assessments of BOP in relation to the percentage of sites with periodontal probing depths (PPD) ≥ 4 mm at patient-level yielded a statistically significantly decreased proportion of BOP in smokers compared to non-smokers and former smokers (p = 0.0137). CONCLUSIONS Irrespective of the smoking status, increased mean BOP in SPT patients relates to disease severity and periodontal instability while smokers demonstrate lower mean BOP concomitantly with an increased prevalence of residual PPDs.
Resumo:
OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.
Resumo:
BACKGROUND To evaluate in patients with aggressive periodontitis (AgP) the effect of nonsurgical periodontal treatment in conjunction with either additional administration of systemic antibiotics (AB) or application of photodynamic therapy (PDT) on the gingival crevicular fluid (GCF) concentration of matrix metalloproteinases 8 and 9 (MMP-8 and -9). METHODS Thirty-six patients with AgP were included in the study. Patients were randomly assigned to treatment with either scaling and root planing (SRP) followed by systemic administration of AB (e.g. Amoxicillin + Metronidazole) or SRP + PDT. The analysis of MMP-8 and -9 GCF concentrations was performed at baseline and at 3 and 6 months after treatment. Nonparametric U-Mann-Whitney test was used for comparison between groups. Changes from baseline to 3 and 6 months were analyzed with the Friedman's ANOVA test with Kendall's index of consistency. RESULTS In the AB group, patients showed a statistically significant (p = 0.01) decrease of MMP-8 GCF level at both 3 and 6 months post treatment. In the PDT group, the change of MMP-8 GCF level was not statistically significant. Both groups showed at 3 and 6 months a decrease in MMP-9 levels. However, this change did not reach statistical significance. CONCLUSIONS Within the limits of the present study, it may be suggested that in patients with AgP, nonsurgical periodontal therapy in conjunction with adjunctive systemic administration of amoxicilin and metronidazole is more effective in reducing GCF MMP-8 levels compared to the adjunctive use of PDT.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.
Resumo:
Intrabony periodontal defects are a frequent complication of periodontitis and, if left untreated, may negatively affect long-term tooth prognosis. The optimal outcome of treatment in intrabony defects is considered to be the absence of bleeding on probing, the presence of shallow pockets associated with periodontal regeneration (i.e. formation of new root cementum with functionally orientated inserting periodontal ligament fibers connected to new alveolar bone) and no soft-tissue recession. A plethora of different surgical techniques, often including implantation of various types of bone graft and/or bone substitutes, root surface demineralization, guided tissue regeneration, growth and differentiation factors, enamel matrix proteins or various combinations thereof, have been employed to achieve periodontal regeneration. Despite positive observations in animal models and successful outcomes reported for many of the available regenerative techniques and materials in patients, including histologic reports, robust information on the degree to which reported clinical improvements reflect true periodontal regeneration does not exist. Thus, the aim of this review was to summarize, in a systematic manner, the available histologic evidence on the effect of reconstructive periodontal surgery using various types of biomaterials to enhance periodontal wound healing/regeneration in human intrabony defects. In addition, the inherent problems associated with performing human histologic studies and in interpreting the results, as well as certain ethical considerations, are discussed. The results of the present systematic review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable extent using a range of methods and materials. Periodontal regeneration has been observed following the use of a variety of bone grafts and substitutes, guided tissue regeneration, biological factors and combinations thereof. Combination approaches appear to provide the best outcomes, whilst implantation of alloplastic material alone demonstrated limited, to no, periodontal regeneration.
Resumo:
The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.
Resumo:
BACKGROUND Treatment of furcation defects is a core component of periodontal therapy. The goal of this consensus report is to critically appraise the evidence and to subsequently present interpretive conclusions regarding the effectiveness of regenerative therapy for the treatment of furcation defects and recommendations for future research in this area. METHODS A systematic review was conducted before the consensus meeting. This review aims to evaluate and present the available evidence regarding the effectiveness of different regenerative approaches for the treatment of furcation defects in specific clinical scenarios compared with conventional surgical therapy. During the meeting, the outcomes of the systematic review, as well as other pertinent sources of evidence, were discussed by a committee of nine members. The consensus group members submitted additional material for consideration by the group in advance and at the time of the meeting. The group agreed on a comprehensive summary of the evidence and also formulated recommendations for the treatment of furcation defects via regenerative therapies and the conduction of future studies. RESULTS Histologic proof of periodontal regeneration after the application of a combined regenerative therapy for the treatment of maxillary facial, mesial, distal, and mandibular facial or lingual Class II furcation defects has been demonstrated in several studies. Evidence of histologic periodontal regeneration in mandibular Class III defects is limited to one case report. Favorable outcomes after regenerative therapy for maxillary Class III furcation defects are limited to clinical case reports. In Class I furcation defects, regenerative therapy may be beneficial in certain clinical scenarios, although generally Class I furcation defects may be treated predictably with non-regenerative therapies. There is a paucity of data regarding quantifiable patient-reported outcomes after surgical treatment of furcation defects. CONCLUSIONS Based on the available evidence, it was concluded that regenerative therapy is a viable option to achieve predictable outcomes for the treatment of furcation defects in certain clinical scenarios. Future research should test the efficacy of novel regenerative approaches that have the potential to enhance the effectiveness of therapy in clinical scenarios associated historically with less predictable outcomes. Additionally, future studies should place emphasis on histologic demonstration of periodontal regeneration in humans and also include validated patient-reported outcomes. CLINICAL RECOMMENDATIONS Based on the prevailing evidence, the following clinical recommendations could be offered. 1) Periodontal regeneration has been established as a viable therapeutic option for the treatment of various furcation defects, among which Class II defects represent a highly predictable scenario. Hence, regenerative periodontal therapy should be considered before resective therapy or extraction; 2) The application of a combined therapeutic approach (i.e., barrier, bone replacement graft with or without biologics) appears to offer an advantage over monotherapeutic algorithms; 3) To achieve predictable regenerative outcomes in the treatment of furcation defects, adverse systemic and local factors should be evaluated and controlled when possible; 4) Stringent postoperative care and subsequent supportive periodontal therapy are essential to achieve sustainable long-term regenerative outcomes.