736 resultados para Penaeus monodon fabricius
Resumo:
Acini in in the salivary glands of female tick specimens of Amblyomma ajennense unfed at both postnymphal and adult phases, were studied. The salivary glands are consisted by three acini, one agranular and two granular. The agranular acini are directly attached to the anterior portion of the main salivary duct, consisting of cells without valve. A relatively large, clear, central cell occupies most of the alveolar midsection. The central cell is in contact with the acini lumen. Granular acini consist of approximately seven to fourteen cells (type II acini) or seven to sixteen (type III acini). The type II acini have three types of granular cells ("a", "b" and "c") and valve; the type III acini have another three types of granular cells ("d", "e" and "f") also presenting a valve.
Resumo:
Acini in the salivary glands of unfed male Amblyomma cajennense of different ages, were studied. The salivary glands consist of one agranular and three granular acini types. The agranular acini are directly attached to the medial and anterior portion of the main salivary duct, and to some branches of the secondary ducts. A large, clear, central cell occupies the centre and this cell is in contact with the acinar lumen. There is no valve to the lumen. Granular acini consist of approximately six to fourteen cells (type II acini) or eight to thirteen (type III acini). The type II acini have three types of granular cells ("a", "b" and "c") and a valve: the type III acini have three types of granular cells ("d", "e" and "f" and a valve.
Resumo:
An artificial feeding system was used where citrated bovine blood was offerred to male and female Amblyomma cajennense. Vestiges of blood, sweat, hair and exfoliated skin were used as phago-stimulants placed on the surface of the silicone membrane. The ticks were collected, as engorged nymphs, from naturally infested equines, with the ecdysis occurring in the laboratory. Four hundred ticks were used, 50% being female, at three to four weeks post-ecdysis. Vestiges of blood on the silicone membrane were the most efficient phago-stimulant and the association of vestiges of blood and sweat residue smears yielded better results compared to the other phago-stimulants used
Resumo:
The parasitic specificity of larval, nymph and adult Amblyomma cajennense on six different host species: Oryctolagus cuniculus, Rattus norvegicus, Gallus gallus domesticus, Anas platyrhynchus, Coturnix coturnix and Streptopelia decorata is described. In terms of the numbers of larvae and nymphs recovered, O. cuniculus was the best host species. The modal day for drop-off of larvae and nymphs was day three for the mammal hosts, but variable in the birds. We conclude that adult A. cajennense have a strong degree of specificity due to the fact that the tick failed to complete its life cycle on any of the evaluated hosts. The immature stages, on the other hand, showed a low level of specificity, most especially in the larval stage, indicating the existence of secondary hosts which probably serve as dispersers in the wild. The results also indicated a variable drop-off rhythm for larvae and nymphs in two periods, diurnal (6-18 hr) and nocturnal (18-6 hr), which differed depending upon the host.
Resumo:
We evaluated the prevalence, mean intensity and relative density of ticks in 467 wild birds of 67 species (12 families) from forest and cerrado habitats at two protected areas of Minas Gerais, between March and September 1997. Ticks collected (n=177) were identified as larvae and nymphs of Amblyomma cajennense and four other species of Amblyomma. We report for the first time 28 bird species as hosts of the immature stages of A. cajennense, demonstrating the lack of host specificity of the larvae and nymphs. A. cajennense had 15% prevalence on birds, with a mean infestation intensity of 0.37 ticks per host sampled, and 2.5 ticks per infested bird. Prevalence varied in relation to host species, diet and between birds from forests at two successional stages. There were no differences in relation to host forest dependence, participation in mixed flocks of birds, and nest type constructed. A. cajennense is a species of medical and veterinary importance, occurring on domestic animals but is known little of its occurrence on wildlife.
Resumo:
The aim of this note was to record for the first time the finding of Hemilucilia segmentaria acting as biological vector of Dermatobia hominis, during a study of the diversity of Calliphoridae at Reserva Biológica do Tinguá, Rio de Janeiro, Brazil. The insects were captured using traps baited with chicken vicera, for a period of 28-30 h twice per month. In the period of one year, 1987 insects were collected, 7.5% of which belonged to the H. segmentaria; of these a female was captured in May 2001, carrying a mass of 20 eggs on the left side of its abdomen.
Resumo:
Under laboratory conditions it has been possible to show that Tapinoma melanocephalum could be considered as a tramp species. Functionnal polygyny, unicoloniality and budding are investigated.
Resumo:
The genus Anthidium Fabricius in the South America: key for the species, descriptive notes, and geographical distribution (Hymenoptera, Megachilidae, Anthidiini). The Anthidiini, in South America, is represented by a single genus Anthidium Fabricius, 1804 (type-species: Apis manicata Linnaeus, 1758). Thirty nine species are treated in this paper, as follows: Anthidium alsinai Urban, 2001; A. andinum Joergensen, 1912; A. anurospilum Moure, 1957 nom. reval. (formerly = A. espinosai Ruiz, 1938); A. atricaudum Cockerell, 1926; A. aymara Toro & Rodríguez, 1998; A. chilense Spinola, 1851; A. chubuti Cockerell, 1910; A. colliguayanum Toro & Rojas, 1970; A. cuzcoense Schrottky, 1910; A. danieli Urban, 2001; A. decaspilum Moure, 1957; A. deceptum Smith, 1879; A. edwini Ruiz, 1935; A. espinosai Ruiz, 1938; A. falsificum Moure, 1957; A. friesei Cockerell, 1911; A. funereum Schletterer, 1890; A. garleppi Schrottky, 1910 = A. matucanense Cockerell, 1914 syn. nov.; A. gayi Spinola, 1851; A. igori Urban, 2001; A. larocai Urban, 1997; A. latum Schrottky, 1902; A. luizae Urban, 2001; A. manicatum (Linnaeus, 1758); A. masunariae Urban, 2001; A. nigerrimum Schrottky, 1910; A. paitense Cockerell, 1926; A. penai Moure, 1957; A. peruvianum Schrottky, 1910; A. rafaeli Urban, 2001; A. rozeni Urban, 2001; A. rubripes Friese, 1908 = A. boliviense Friese, 1920 syn. nov. = A. adriani Ruiz, 1935 syn. nov. = A. kuscheli Moure, 1957 syn. nov.; A. sanguinicaudum Schwarz, 1933; A. sertanicola Moure & Urban, 1964; A. tarsoi Urban, 2001; A. toro Urban. 2001; A. vigintiduopunctatum Friese, 1904; A. vigintipunctatum Friese, 1908, and A. weyrauchi Schwarz, 1943. Some taxonomic comments are made for each species, and new data on geographic distribution are also given. The females of A. andinum, A. igori, A. rozeni and the male of A. anurospilum are described for the first time. Identification keys (for males and females), as well as illustrations for almost all species, are provided.
Resumo:
Blowflies utilize discrete and ephemeral sites for breeding and larval nutrition. After the exhaustion of food, the larvae begin dispersing to search for sites to pupate or to additional food source, process referred as postfeeding larval dispersal. Some of the most important aspects of this process were investigated in Chrysomya megacephala, utilizing a circular arena to permit the radial dispersion of larvae from the center. To determinate the localization of each pupa, the arena was split in 72 equal sectors from the center. For each pupa, distance from the center of arena, weight and depth were determined. Statistical tests were performed to verify the relation among weight, depth and distance of burying for pupation. It was verified that the larvae that disperse farther are those with higher weights. The majority of individuals reached the depth of burying for pupation between 7 and 18 cm. The study of this process of dispersion can be utilized in the estimation of postmortem interval (PMI) for human corpses in medico-criminal investigations.
Resumo:
Three new species of Centris Fabricius, 1804 are described: C. (Melacentris) melanosara sp. nov. (Viçosa-MG, Brazil), C. (Ptilotopus) melampoda sp. nov. (Manaus-AM, Brazil), and C. (Ptilotopus) erythrotricha sp. nov. (Pucallpa, Peru). Centris (Melacentris) frieseana nom. nov., a new name given to Centris friesei Ducke, 1902, non Schrottky, 1902. Comments and comparison between C. (Melacentris) rhodoprocta Moure & Seabra, 1961 and C. (Ptilotopus) nobilis Westwood, 1840, are given. All the species are figured.
Resumo:
Centris (Centris) pulchra sp. nov. is described and illustrated. The specimens were collected in a restricted area of coastal sand dunes with "restinga" vegetation in northeast of Brazil, near Salvador-BA.