924 resultados para Pearson’s correlation
Resumo:
This article analyzes the relationship between the admission exams from the Universidad Nacional de Costa Rica (UNA) and the performance of students during their first two courses of specialization in the field of Teaching Mathematics.In this analysis, the following variables were considered: individual result at the admission exam, average performance during high school and during the first two Mathematics courses of the career. To determine the relation between the variables, Pearson’s correlation coefficient was used.The results reveal that the different modules of the admission exams show a low correlation with the performance in both courses. Therefore, the research concluded that the current process of selection of students, based on an admission exam, is not a tool that can be considered adequate to detect the previous knowledge to guarantee the success in the university career
Resumo:
Four papers, written in collaboration with the author’s graduate school advisor, are presented. In the first paper, uniform and non-uniform Berry-Esseen (BE) bounds on the convergence to normality of a general class of nonlinear statistics are provided; novel applications to specific statistics, including the non-central Student’s, Pearson’s, and the non-central Hotelling’s, are also stated. In the second paper, a BE bound on the rate of convergence of the F-statistic used in testing hypotheses from a general linear model is given. The third paper considers the asymptotic relative efficiency (ARE) between the Pearson, Spearman, and Kendall correlation statistics; conditions sufficient to ensure that the Spearman and Kendall statistics are equally (asymptotically) efficient are provided, and several models are considered which illustrate the use of such conditions. Lastly, the fourth paper proves that, in the bivariate normal model, the ARE between any of these correlation statistics possesses certain monotonicity properties; quadratic lower and upper bounds on the ARE are stated as direct applications of such monotonicity patterns.
Resumo:
Automaticity (in this essay defined as short response time) and fluency in language use are closely connected to each other and some research has been conducted regarding some of the aspects involved. In fact, the notion of automaticity is still debated and many definitions and opinions on what automaticity is have been suggested (Andersson,1987, 1992, 1993, Logan, 1988, Segalowitz, 2010). One aspect that still needs more research is the correlation between vocabulary proficiency (a person’s knowledge about words and ability to use them correctly) and response time in word recognition. Therefore, the aim of this study has been to investigate this correlation using two different tests; one vocabulary size test (Paul Nation) and one lexical decision task (SuperLab) that measures both response time and accuracy. 23 Swedish students partaking in the English 7 course in upper secondary Swedish school were tested. The data were analyzed using a quantitative method where the average values and correlations from the test were used to compare the results. The correlations were calculated using Pearson’s Coefficient Correlations Calculator. The empirical study indicates that vocabulary proficiency is not strongly correlated with shorter response times in word recognition. Rather, the data indicate that L2 learners instead are sensitive to the frequency levels of the vocabulary. The accuracy (number of correct recognized words) and response times correlate with the frequency level of the tested words. This indicates that factors other than vocabulary proficiency are important for the ability to recognize words quickly.
Resumo:
If in a correlation test, one or both variables are small whole numbers, scores based on a limited scale, or percentages, a non-parametric correlation coefficient should be considered as an alternative to Pearson’s ‘r’. Kendall’s t and Spearman’s rs are similar tests but the former should be considered if the analysis is to be extended to include partial correlations. If the data contain many tied values, then gamma should be considered as a suitable test.
Resumo:
In previous statnotes, the application of correlation and regression methods to the analysis of two variables (X,Y) was described. The most important statistic used to measure the degree of correlation between two variables is Pearson’s ‘product moment correlation coefficient’ (‘r’). The correlation between two variables may be due to their common relation to other variables. Hence, investigators using correlation studies need to be alert to the possibilities of spurious correlation and the methods of ‘partial correlation’ are one method of taking this into account. This statnote applies the methods of partial correlation to three scenarios. First, to a fairly obvious example of a spurious correlation resulting from the ‘size effect’ involving the relationship between the number of general practitioners (GP) and the number of deaths of patients in a town. Second, to the relationship between the abundance of the nitrogen-fixing bacterium Azotobacter in soil and three soil variables, and finally, to a more complex scenario, first introduced in Statnote 24involving the relationship between the growth of lichens in the field and climate.
Resumo:
The intra-class correlation coefficient (ICC or ri) is a method of measuring correlation when the data are paired and therefore, should be used when experimental units are organised into groups. A useful analogy is with the unpaired or paired ‘t’ test to compare the differences between the means of two groups. In studies of reproducibility, there may actually be little difference between the ICC and Pearson’s ‘r’ for ‘true’ repeated measurements. If, however, there is a systematic change in the measurements made on the first compared with the second occasion, then the ICC will be significantly less than ‘r’, and less confidence would be placed in the reproducibility of the results.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.
Resumo:
Monitoring unused or dark IP addresses offers opportunities to extract useful information about both on-going and new attack patterns. In recent years, different techniques have been used to analyze such traffic including sequential analysis where a change in traffic behavior, for example change in mean, is used as an indication of malicious activity. Change points themselves say little about detected change; further data processing is necessary for the extraction of useful information and to identify the exact cause of the detected change which is limited due to the size and nature of observed traffic. In this paper, we address the problem of analyzing a large volume of such traffic by correlating change points identified in different traffic parameters. The significance of the proposed technique is two-fold. Firstly, automatic extraction of information related to change points by correlating change points detected across multiple traffic parameters. Secondly, validation of the detected change point by the simultaneous presence of another change point in a different parameter. Using a real network trace collected from unused IP addresses, we demonstrate that the proposed technique enables us to not only validate the change point but also extract useful information about the causes of change points.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.